Skip to main content Accessibility help
Hostname: page-component-5c569c448b-ckh7h Total loading time: 1.075 Render date: 2022-07-02T03:38:06.529Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Post-Paleozoic Patterns in Marine Predation: Was there a Mesozoic and Cenozoic Marine Predatory Revolution?

Published online by Cambridge University Press:  21 July 2017

Sally E. Walker
Department of Geology, University of Georgia, Athens, Georgia 30602 USA
Carlton E. Brett
Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221-0013 USA
Get access


Mesozoic and Cenozoic evolution of predators involved a series of episodes. Predators rebounded rather rapidly after the Permo-Triassic extinction and by the Middle Triassic a variety of new predator guilds had appeared, including decapod crustaceans with crushing claws, shell-crushing sharks and bony fish, as well as marine reptiles adapted for crushing, smashing, and piercing shells. While several groups (e.g., placodonts, nothosaurs) became extinct in the Late Triassic crises, others (e.g., ichthyosaurs) survived; and the Jurassic to Early Cretaceous saw the rise of malacostracan crustaceans with crushing chelae and predatory vertebrates—in particular, the marine crocodilians, ichthyosaurs, and plesiosaurs. The late Cretaceous saw unprecedented levels of diversity of marine predaceous vertebrates including pliosaurids, plesiosaurs, and mosasaurs. The great Cretaceous-Tertiary extinction decimated marine reptiles. However, most invertebrate and fish predatory groups survived; and during the Paleogene, predatory benthic invertebrates showed a spurt of evolution with neogastropods and new groups of decapods, while the teleosts and neoselachian sharks both underwent parallel rapid evolutionary radiations; these were joined by new predatory guilds of sea birds and marine mammals. Thus, although escalation is sometimes cast as an ongoing “arms race,” in actuality the predatory record shows long interludes of relative stability puncturated by episodes of abrupt biotic reorganization during and after mass extinctions. This pattern suggests episodic, but generally increasing, predation pressure on marine organisms through the Mesozoic-Cenozoic interval. However, review of the Cenozoic record of predation suggests that there are not unambiguous escalatory trends in regard to antipredatory shell architecture, such as conchiolin and spines; nor do shell drilling and shell repair data show a major increase from the Late Mesozoic through the Cenozoic. Most durophagous groups are generalists, and thus it may be that they had a diffuse effect on their invertebrate prey.

Section II: Patterns
Copyright © 2002 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Adnet, S., and Cappetta, H. 2001. A paleontological and phylogenetical analysis of squaliform sharks (Chondrichthyes: Squaliformes) based on dental characters. Lethaia, 34:234248.CrossRefGoogle Scholar
Ahyong, S. T., and Harling, C. 2000. The phylogeny of the stomatopod Crustacea. Australian Journal of Zoology, 48:607642.CrossRefGoogle Scholar
Allmon, W. D., Nieh, J. C., and Norris, R. D. 1990. Drilling and peeling of turritelline gastropods since the Late Cretaceous. Palaeontology, 33:595611.Google Scholar
Anderson, L. 1992. Naticid gastropod predation on corbulid bivalves: effects of physical factors, morphological features, and statistical artifacts. Palaios, 7:602620.CrossRefGoogle Scholar
Anderson, L. C., Geary, D. H., Nehm, R. H., and Allmon, W. D. 1991. A comparative study of naticid gastropod predation on Variborbula caloosae and Chione cancellata, Plio-Pleistocene of Florida, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 85:2946.CrossRefGoogle Scholar
Arata, A. A., and Hutchinson, J. H. 1964. The Raccoon (Procyon) in the Pleistocene of North America. Tulane Studies in Geology, 2:2127.Google Scholar
Aronson, R. B. 1987. Predation on fossil and Recent ophiuroids. Paleobiology, 13:187192.CrossRefGoogle Scholar
Aronson, R. B. 1988. Palatability of five Caribbean ophiuroids. Bulletin of Marine Science, 43:9397.Google Scholar
Aronson, R. B. 1991. Predation, physical disturbance, and sublethal arm damage in ophiuroids: a Jurassic-Recent comparison. Marine Ecology Progress Series, 74:9197.CrossRefGoogle Scholar
Aronson, R. B., Blake, D. B., and Oji, T. 1997. Retrograde community structure in the late Eocene of Antarctica. Geology, 25:903906.2.3.CO;2>CrossRefGoogle Scholar
Ausich, W. I. 1997. Regional encrinites; a vanished lithofacies, p. 509519. In Brett, C. E. and Baird, G. C., Paleontological Events: Stratigraphic, Ecological and Evolutionary Implications. Columbia University Press, New York.Google Scholar
Avery, G., and Siegfried, W. R. 1980. Food gatherers along South Africa's seashores. Oceans, 13:3337.Google Scholar
Baluk, W., and Radwanski, A. 1996. Stomatopod predation upon gastropods from the Korytnica Basin, and from other classical Miocene localities in Europe. Acta Geologica Polonica, 46:279304 Google Scholar
Bambach, R. K., and Kowalewski, M. 1999. Diversity of predators compared to the records of prey-predator escalation: Two tales of the history of predation. Geological Society of America Abstracts with Programs, 31(7):A336.Google Scholar
Bardet, N. 1992. Stratigraphic evidence for the extinction of ichthyosaurs. Terra Nova, 4:649656.CrossRefGoogle Scholar
Bardet, N. 1994. Extinction events among Mesozoic marine mammals. Historical Biology, 7:313324.CrossRefGoogle Scholar
Barnes, L. G. 1984. Whales, dolphins and porpoises: evolution of the Cetacea, p. 139154. In Gingerich, P. D. and Badgely, C. E. (eds.), Mammals: Notes for a Short Course. University of Tennessee Department of Geological Sciences, Studies in Geology, 8.Google Scholar
Barnes, L. G., and McLeod, S. A. 1984. The fossil record and phyletic relationships of gray whales, p. 332. In Jones, M. L., Swartz, S. L., and Leatherwood, S. (eds.), The Gray Whale Escrichtius robustus. Academic Press, Orlando, FL.CrossRefGoogle Scholar
Baumiller, T. K., Mooi, R., and Messing, C. G. 1999. Predator-prey interactions between cidaroids and crinoids and their ecological and evolutionary implications. Geological Society of America Abstracts with Programs, 31:172173.Google Scholar
Bellwood, D. R. 1996. The Eocene fishes of Monte Bolca: the earliest coral reef assemblage. Coral Reefs, 15:1119.CrossRefGoogle Scholar
Benton, M. J. (ed.) 1993. The Fossil Record 2. Chapman and Hall, London, 845 p.Google Scholar
Benton, M. J. 1997. Vertebrate Palaeontology, 2nd edition. Chapman and Hall, London, New York, 452 p.CrossRefGoogle Scholar
Berry, S. S. 1956. A new west Mexican prosobranch mollusk parasitic on echinoids. American Midland Naturalist, 56:355357.CrossRefGoogle Scholar
Beu, A. G., Henderson, R. A., and Nelson, C. S. 1972. Notes on the taphonomy and paleoecology of New Zealand. New Zealand Journal of Geology and Geophysics, 15:275286.CrossRefGoogle Scholar
Bishop, G. A. 1975. Traces of predation, p. 2671–281. In Frey, R. W. (ed.), The Study of Trace Fossils. Springer-Verlag, New York, Heidelberg, Berlin, 562 p.Google Scholar
Bjorndal, K. A. 1985. Nutritional ecology of sea turtles. Copeia, 1985:736751.CrossRefGoogle Scholar
Bitner, M. A. 1996. Brachiopods from the Eocene La Meseta Formation of Seymour Island, Antarctic Peninsula, p. 65100. In Gazdzicki, A. (ed.), Palaeontological results of the Polish Antarctic expeditions. Palaeontologia Polonica, 55.Google Scholar
Blake, D. B. 1993. A new asteroid genus from the Jurassic of England and its functional significance. Palaeontology, 36:147154.Google Scholar
Blake, D. B., and Zinsmeister, W. J. 1979. Two early Cenozoic sea stars (Class Astedroidea) from Seymour Island, Antarctic Peninsula. Journal of Paleontology, 53:11451154.Google Scholar
Blotte, J. 1980. La faune ichthyologique des gisements due Monte Bolca (Province de Vérone, Italie). Catalogue systématique présentant l'état actuel des recherches concernant cette faune. Bulletin Muséum National d'Histoires Naturelles, Paris (Ser. 4), 2C, 4:339–3.Google Scholar
Bottjer, D. J. 1985. Bivalve paleoecology, p. 112137. In Bottjer, D. J., Hickman, C. S., and Ward, P. D. (eds.), Mollusks: Notes for a Short Course. University of Tennessee Department of Geological Sciences, Studies in Geology, 13.Google Scholar
Bottjer, D., and Jablonski, D. 1988. Paleonevironmental patterns in the evolution of post-Paleozoic marine invertebrates. Palaios, 3:540560.CrossRefGoogle Scholar
Boucot, A. J. 1981. Principles of Benthic Marine Paleoecology. Academic Press, New York, 463 p.Google Scholar
Boucot, A. J. 1990. Evolutionary Paleobiology of Behavior and Coevolution. Elsevier, Amsterdam, 725 p.Google Scholar
Branch, G. M. 2000. Interrelations among rock lobsters, sea urchins, and juvenile abalone: implications for community management. Canadian Journal of Fisheries and Aquatic Science, 57:21752185.Google Scholar
Brett, C. E. 1990. Predation, 4.13.1, p. 368372. In Briggs, D. E. G. and Crowther, P. W. (eds.), Paleobiology: A Synthesis. Blackwell Scientific, Oxford.Google Scholar
Brett, C. E. 1995. Sequence stratigraphy, biostratigraphy, and taphonomy in shallow marine environments. Palaios, 10:597616.CrossRefGoogle Scholar
Brett, C. E., and Allison, P. A. 1998. Paleontological approaches to environmental interpretation of marine mudrocks, p. 301349. In Schieber, J., Zimmerle, W., and Sethi, P. S. (eds.), Shales and Mudstones, Vol. 1: Basin Studies, Sedimentology, and Paleontology.Google Scholar
Schweizerbart'sche, E., Stuttgart, . Brett, C. E., Ivany, L. C., and Schopf, K. M. 1996. Coordinated stasis: An overview. Palaeogeography, Palaeoclimatology, Palaeoecology, 127:120.Google Scholar
Briggs, D. E. G., and Clarkson, E. N. K. 1990. The late Palaeozoic radiation of malacostracan crustaceans, p. 165186. In Taylor, P. D. and Larwood, G. P. (eds.), Major Evolutionary Radiations. Clarendon Press, Oxford.Google Scholar
Bromley, R. G. 1981. Concepts in ichnotaxonomy illustrated by small, round holes in shells. Acta Geologica Hispanica, 16:5564.Google Scholar
Bromley, R. G. 1993. Predation habits of octopus past and present and a new ichnospecies, Oichnus ovalis. bulletin of the Geological Society of Denmark, 40:167173.Google Scholar
Burrows, M. 1969. The mechanics and neural control of the prey capture strike in the mantid shrimps Squilla and Pseudosquilla. Zeitschrift der Vergleichen Physiologie, 62:361381.CrossRefGoogle Scholar
Cadée, G. C. 1968. Molluscan biocoenoses and thanatocoenoses in the Ria de Arosa, Galicia, Spain. Zoologische Verhandelingen, 95:1121.Google Scholar
Cadée, G. C. 1989. Size-selective transport of shells by birds and its palaeoecological implications. Palaeontology, 32:429437.Google Scholar
Cadée, G. C. 1990. Feeding traces and bioturbation by birds on a tidal flat, Dutch Wadden Sea. Ichnos, 1:2330.CrossRefGoogle Scholar
Cadée, G. C. 1995. Birds as producers of shell fragments in the Wadden Sea, in particular the role of the Herring gull. Geobios, 18:7785.CrossRefGoogle Scholar
Cadée, G. C. 1999. Shell damage and shell repair in the Antarctic limpet Nacella concinna from King George Island. Journal of Sea Research, 41:149162.CrossRefGoogle Scholar
Cadée, G. C., Walker, S. E., and Flessa, K. 1997. Gastropod shell repair in the intertidal of Bahia la Choya (N. Gulf of California). Palaeogeography, Palaeoclimatology, Palaeoecology, 136:678–78.CrossRefGoogle Scholar
Caldwell, M. W., and Lee, M. S. Y. 1997. A snake with legs from the marine Cretaceous of the Middle East. Nature, 386:705–652.CrossRefGoogle Scholar
Callaway, J. 1997a. Introduction, Part I: Ichthyosauria, p. 316. In Callaway, J. and Nicholls, E. L. (eds.), Ancient Marine Reptiles. Academic Press, San Diego.CrossRefGoogle Scholar
Callaway, J. 1997b. A new look at Mixosaurus, Introduction, p. 4559. In Callaway, J. and Nicholls, E. L. (eds.), Ancient Marine Reptiles Academic Press, San Diego.CrossRefGoogle Scholar
Carpenter, K. 1997. Comparative cranial anatomy of two North American Cretaceous plesiosaurs. In Callaway, J. and Nicholls, E. L. (eds.), Ancient Marine Reptiles. Academic Press, San Diego.Google Scholar
Carroll, R. L., and Gaskill, P. 1985. The nothosaur Pachypleurosaurus and the origin of plesiosaurs. Philosophical Transactions of the Royal Society of London, B, 309:343393.CrossRefGoogle Scholar
Carriker, M. 1951. Observations on the penetration of tightly closing bivalves by Busycon and other predators. Ecology, 32:7383.CrossRefGoogle Scholar
Carriker, M. 1969. Penetration of calcium carbonate substrates by lower plants and invertebrates. American Zoologist, 9:6291020.CrossRefGoogle Scholar
Carriker, M. R. 1981. Shell penetration and feeding by naticacean and muricacean predatory gastropods: a synthesis. Malacologia, 20:403422.Google Scholar
Carriker, M. J., and Yochelson, E. L. 1968. Recent gastropod boreholes and Ordovician cylindrical borings. US Geological Survey Professional Paper, B593:126.Google Scholar
Carter, R. M. 1967. The shell ornament of Hysteroconcha and Hecuba (Bivalvia): a test case for inferential functional morphology. Veliger, 10:5971.Google Scholar
Carter, R. M. 1968. On the biology and palaeontology of some predators of bivalved mollusks. Palaeogeography, Palaeoclimatology, Palaeoecology, 4:2965.CrossRefGoogle Scholar
Carter, R. M. 1972. Adaptations of British Chalk Bivalvia. Journal of Paleontology, 46:325340.Google Scholar
Castilla, J. C. 1999. Coastal marine communities: trends and perspectives from human-exclusion experiments. Trends in Ecology and Evolution, 14:280283.CrossRefGoogle ScholarPubMed
Castilla, J. C., and Duran, L. R. 1985. Human exclusion from the rocky intertidal zone of central Chile: the effects on Concholepas concholepas (Gastropoda). Oikos, 45:391399.CrossRefGoogle Scholar
Cate, A. S., and Evans, I. 1994. Taphonomic significance of the biomechanical fragmentation of live molluscan shell material by a bottom-feeding fish (Pogonias cromis) in Texas coastal bays. Palaios, 9:254274.CrossRefGoogle Scholar
Checa, A., and Westermann, G. E. G. 1989. Segmental growth in planulate ammonites: inferences on costal function. Lethaia, 22:95100.CrossRefGoogle Scholar
Chiappe, L. M. 1995. The first 85 million years of avian evolution. Nature, 378:349355.CrossRefGoogle Scholar
Choate, J. H., and Bellwood, D. R. 1991. Reef fishes: their history and evolution, p. 3966. In Sales, P. (ed.), The Ecology of Fishes on Coral Reefs. Academic Press, San Diego.CrossRefGoogle Scholar
Cooper, G. A. 1988. Some Tertiary brachiopods of the East Coast of the United States. Smithsonian Contributions to Paleobiology, 64:154.CrossRefGoogle Scholar
Cortes, E. 1999. Standardized diet compositions and trophic levels of sharks. ICES Journal of Marine Science, 56:707717.CrossRefGoogle Scholar
Costa, D. 1978. The ecological energetics, water, and electrictrolyte balance of the California sea otter, Enhydra lutris. Dissertation, University of California, Santa Cruz, CA.Google Scholar
Cox, C., Hunt, J. H., Lyons, W. G., and Davis, G. E. 1997. Nocturnal foraging of the Caribbean spiny lobster (Panulirus argus) on offshore reefs of Florida. Marine and Freshwater Research, 48:671679.CrossRefGoogle Scholar
Currey, J. D., and Kohn, A. J. 1976. Fracture in the crossed-lamellar structure of Conus shells. Journal of Material Science, 11:16151623.CrossRefGoogle Scholar
Debelius, H. 1999. Crustacea Guide of the World. IKAN-Unterwasserarchiv Press, Frankfurt, 321 p.Google Scholar
De Cauwer, G. 1985. Gastropod predation on corbulid bivalves: palaeoecology or taphonomy? Annales de la Société Royale Zoologique de Belgique, 115:183196.Google Scholar
Demere, T. A., and Cerutti, R. A. 1982. A Pliocene shark attack on a cethotheriid whale. Journal of Paleontology, 56:14801482.Google Scholar
Denton, R. K. Jr., Dobie, J. L., and Parris, D. C. 1997. The Marine Crocodilian Hyposaurus in North America, p. 375397. In Callaway, J. and Nicholls, E. L. (eds.), Ancient Marine Reptiles. Academic Press, San Diego.CrossRefGoogle Scholar
Dietl, G., and Alexander, R. R. 1998. Shell repair frequencies in whelks and moon snails from Delaware and southern New Jersey. Malacologia, 39:151165.Google Scholar
Dietl, G., and Schweigert, G. 1999. A nautiloid with a complete jaw apparatus still in situ from the Lithographic Limestone of Nusplingen (Upper Jurassic, SW Germany). Neues Jahrbuch für Geologie und Palaeontologie, Abhandlungen, 211:7587.Google Scholar
Dietl, G., Alexander, R. R., and Bien, W. F. 2000. Escalation in Late Cretaceous-early Paleocene oysters (Gryphaeidae) from the Atlantic Coastal Plain. Paleobiology, 26:215237.2.0.CO;2>CrossRefGoogle Scholar
Di Giancomo, E. E. and Perier, M. R. 1996. Feeding habits of cockfish, Callorhinchus callorhyncus (Holocephali: Callorhynchidae) in Patagonian waters (Argentina). Marine and Freshwater Research, 47:801808.CrossRefGoogle Scholar
Dodd, C. K. Jr., and Morgan, G. S. 1992. Fossil sea turtles from the Early Pliocene Bone Valley Formation, central Florida. Journal of Herpetology, 26:18.CrossRefGoogle Scholar
Dollo, L. 1913. Globidens fraasi, mosasaurien mylodonte nouveau du Maestrichtien (Crétacé supérieur) du Limbourg, et l'ethologie de la nutrition chez les mosasuriens. Archiv Biol, 28:609626.Google Scholar
Domning, D. P. 1976. An ecological model for late Tertiary sirenian evolution in the North Pacific Ocean. Systematic Zoology, 25:352362.CrossRefGoogle Scholar
Donovan, S. K. 1993. Contractile tissues in the cirri of ancient crinoids: criteria for recognition. Lethaia, 26:163169.CrossRefGoogle Scholar
Donovan, S. K. 2001. Evolution of Caribbean echinoderms during the Cenozoic: moving towards a complete picture using all of the fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 166:177192.CrossRefGoogle Scholar
Donovan, D. A., Danko, J. P., and Carefoot, T. H. 1999. Functional significance of shell sculpture in gastropod molluscs: test of a predator-deterrent hypothesis in Ceratostoma foliatum (Gmelin). Journal of Experimental Marine Biology and Ecology, 236:235251.CrossRefGoogle Scholar
Drinnan, R. E. 1957. The winter feeding of the oystercatcher (Haematopus ostralegus) on the edible mussel (Mytilus edulis) in the Conway estuary, North Wales. Fishery Investigations, Series 2, 22:115.Google Scholar
Druckenmiller, P. S., Daun, A. J., Skulan, J. L., and Pladziewicz, J. C. 1993. Stomach contents in the Upper Cretaceous shark Squalicorax falcatus. Journal of Vertebrate Paleontology, 13(Suppl. 3):33A34A.Google Scholar
Elner, R. W., and Raffaelli, D. G. 1980. Interactions between two marine snails, Littorina rudis Maton and Littorina nigrolineata Gray, a predator, Carcinus maenas (L.), and a parasite, Microphallus similis Jägerskiold. Journal of Experimental Marine Biology and Ecology, 43:151160.CrossRefGoogle Scholar
Engeser, T. 1988. Fossil “octopods”—a critical review, p. 8187. In Clarke, M. R. and Trueman, E. R. (eds.), The Mollusca, Volume 12, Paleontology and Neontology of Cephalopods. Academic Press, San Diego.CrossRefGoogle Scholar
Estes, J. A., and Palmisano, J. F. 1974. Sea otters: their role in structuring nearshore communities. Science, 185:10581060.CrossRefGoogle ScholarPubMed
Estes, J. A., Jameson, R. J., and Rhode, E. B. 1982. Activity and prey selection in the sea otter: influence of population status on community structure. The American Naturalist, 120:242258.CrossRefGoogle Scholar
Feduccia, A. 1995. Explosive evolution in Tertiary birds and mammals. Science, 267:637638.CrossRefGoogle ScholarPubMed
Feifarek, B. P. 1987. Spines and epibionts as antipredator defenses in the thorny oyster Spondylus americanus Hermann. Journal of Experimental Marine Biology and Ecology, 105:3956.CrossRefGoogle Scholar
Fischer, P. H. 1963. Corbules fossiles perforées par des gastéropodes prédateurs. Journal de Conchyliologie Paris, 103:2931.Google Scholar
Fisher, D. C. 1981a. Crocodilian scatology, mirovertebrate concentrations, and enamel-less teeth. Paleobiology, 7:262275.CrossRefGoogle Scholar
Fisher, D. C. 1981b. Mode of preservation of the Shotgun local fauna (Paleocene, Wyoming) and its implication for the taphonomy of microvertebrate concentration. University of Michigan Contributions to the Museum of Paleontology, 25:247257.Google Scholar
Fugita, S. 1916. On the boring of pearl oysters by Octopus (Polypus) vulgaris Lamarck. Dobytsugaki Zasshi, 28:250257.Google Scholar
Fürsich, F. T., and Jablonski, D. 1984. Late Triassic naticid drill holes: carnivorous gastropods gain a major adaptation but fail to radiate. Science, 224:7880.CrossRefGoogle Scholar
Geary, D. H., Allmon, W. D., and Reaka-Kudla, M. J. 1991. Stomatopod predation on fossil gastropods from the Plio-Pleistocene of Florida. Journal of Paleontology, 65:355360.CrossRefGoogle Scholar
Geller, J. B. 1983. Shell repair frequencies of two intertidal gastropods from northern California: Microhabitat differences. The Veliger, 26:113115.Google Scholar
Gibson, M. A., and Watson, J. B. 1989. Predatory and non-predatory borings in echinoids from the upper Ocala formation (Eocene), North Central Florida, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 71:309321.CrossRefGoogle Scholar
Gingerich, P. D., Hag, M. L., Zalmout, I. S., Hussain Khan, I., and Sadiq Malkani, M. 2001. Origin of whales from early Artiodactyls: hands and feet of Eocene Protocetidae from Pakistan. Science, 293:22392242.CrossRefGoogle ScholarPubMed
Glaessner, M. F. 1960. The fossil decapod Crustacea of New Zealand and the evolution of the Order Decapoda. New Zealand Geological Survey Paleontological Bulletin, 31:163.Google Scholar
Glaessner, M. F. 1969. Decapoda, p. R399R533, R626–R628. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, part R, Arthropoda. University of Kansas and Geological Society of America, Lawrence, KS.Google Scholar
Glodek, G. S., and Voris, H. K. 1982. Marine snake diets: Prey consumption, diversity, and overlap. Copeia, 3:661666.CrossRefGoogle Scholar
Godfrey, S. 1984. Plesiosaur subaqueous locomotion: a reappraisal. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 11:661672.Google Scholar
Gore, R. H., and Scotto, L. E. 1979. Crabs of the Family Parthenopidae (Crustacea, Brachyura: Oxyrhyncha) with notes on specimens from the Indian River region of Florida. Memoirs of the Hourglass Cruises, Florida Marine Research Institution, 3:198.Google Scholar
Gottfried, M. D., Compagno, L. J. V., and Bowman, S. C. 1996. Size and skeletal anatomy of the giant “megatooth” shark Carcharodon megalodon , p. 5566. In Klimley, A. P. (ed.), Great White Sharks: The Biology of Carcharodon carcharia. Academic Press, San Francisco.CrossRefGoogle Scholar
Gould, S. J., and Vrba, E. 1982. Exaptation—A missing term in the science of form. Paleobiology, 8:415.CrossRefGoogle Scholar
Grant, R. E. 1966. Spine arrangement and life habits of the productoid brachiopod Waagenoconcha. Journal of Paleontology, 40:10631069.Google Scholar
Grant-Mackie, J. A., and Chapman-Smith, M. 1971. Paleontological notes on the Castlecliffian Te Piki Bed, with descriptions of a new molluscan taxa. New Zealand Journal of Geology and Geophysics, 14:665704.CrossRefGoogle Scholar
Greenstein, B. J. 1993. Is the fossil record of regular echinoids really so poor?—A comparison of living and subfossil assemblages. Palaios, 8:587–540.CrossRefGoogle Scholar
Gray, A. E., Mulligan, F. J., and Hannah, R. W. 1997. Food habits, occurrence, and population structure of the bat ray, Myliobatis californica, in Humbolt Bay, California. Environmental Biology of Fishes, 49:227238.CrossRefGoogle Scholar
Gregoire, C. 1972. Structure of the molluscan shell, p. 45102. In Florikin, M. and Scheer, B. T. (eds.), Chemical Zoology, Volume 7, Mollusca. Academic Press, New York.Google Scholar
Gregory, M. P., Balance, P. F., Gibson, G. W., and Ayling, A. M. 1979. On how some rays (Elasmobranchia) excavate feeding depressions by jetting water. Journal of Sedimentary Petrology, 49:11251130.Google Scholar
Haley, D. 1986. Marine Mammals. Pacific Search Press, Seattle, Washington, 296 p.Google Scholar
Hallam, A. 1976. Stratigraphic distribution and ecology of European Jurassic bivalves. Lethaia, 9:245259.CrossRefGoogle Scholar
Hallock, P., and Talge, H. K. 1994. A predatory foraminifer, Floresina amphiphaga n. sp., from the Florida Keys. Journal of Foraminiferal Research, 24:210213.CrossRefGoogle Scholar
Hansen, T. A., and Kelley, P. H. 1995. Spatial variation of naticid gastropod predation in the Eocene of North America. Palaios, 10:268278.CrossRefGoogle Scholar
Hansen, T. A., Kelley, P. H., Melland, V. D., and Graham, S. E. 1999. Effect of climate-related mass extinctions on escalation in mollusks. Geology, 27:11391142.2.3.CO;2>CrossRefGoogle Scholar
Häntzshel, W., El-Baz, F., and Amstutz, G. C. 1968. Coprolites: an annotated bibliography. Memoir of the Geological Society of America, 108:1132.Google Scholar
Harper, E. M. 1991. The role of predation in the evolution of cementation in bivalves. Palaeontology, 34:455460.Google Scholar
Harper, E. M. 1994. Are conchiolin sheets in corbulid bivalves primarily defensive? Palaeontology, 37:551578.Google Scholar
Harper, E. M. 2002. Plio-Pleistocene octopod drillling behavior in scallops from Florida. Palaios, 17:292295.2.0.CO;2>CrossRefGoogle Scholar
Harper, E. M., and Skelton, P. 1993. The Mesozoic marine revolution and epifaunal bivalves. Scripta Geologica, Special Issue, 2:127153.Google Scholar
Hasson, P. F., and Fischer, A. G. 1986. Observations on the Neogene of northwestern Ecuador. Micropaleontology, 32:3242.CrossRefGoogle Scholar
Hawkins, W. B. Jr. 1990. Taphonomy of an Upper Cretaceous (Maastrichtian) mosasaur, Braggs, Alabama. Journal of Vertebrate Paleontology, 10(Suppl. 3):26A.Google Scholar
Hayami, I., and Kanie, Y. 1980. Mode of life of a giant capulid gastropod from the Upper Cretaceous of Saghalien and Japan. Palaeontology, 23:689698.Google Scholar
Heatwole, H. 1987. Sea Snakes. The New South Wales University Press, Australia, 85 p.Google ScholarPubMed
Hecht, M. K., Kropach, C., and Hecht, B. M. 1974. Distribution of the yellowbellied sea snake, Pelamis platurus, and its significance in relation to the fossil record. Herpetologica, 30:387396.Google Scholar
Hendrickson, J. R. 1980. The ecological strategies of sea turtles. American Zoologist, 20:597609.CrossRefGoogle Scholar
Hewitt, R. A., and Westermann, G. E. G. 1990. Mosasaur tooth marks on the ammonite Placenticeras from the Upper Cretaceoous BearPaw Formation of Alberta. Canadian Journal of Earth Science, 27:469472.CrossRefGoogle Scholar
Hickman, C. S. 1980. Gastropod radulae and the assessment of form in evolutionary paleontology. Paleobiology, 6:276294.CrossRefGoogle Scholar
Hines, A. H., and Pearse, J. S. 1982. Abalones, shells, and sea otters: dynamics of prey populations in central California. Ecology, 63:15471560.CrossRefGoogle Scholar
Hirayama, R. 1997. Distribution and diversity of Cretaceous cehloniods, p. 225241. In Callaway, J. and Nicholls, E. L. (eds.), Ancient Marine Reptiles. Academic Press, San Diego.CrossRefGoogle Scholar
Hof, C. H. J. 1998. Fossil Stomatopods (Crustacea: Malacostraca) and their phylogenetic impact. Journal of Natural History, 32:15671576.CrossRefGoogle Scholar
Hof, C. H. J., and Briggs, D. E. G. 1997. Decay and mineralization of mantis shrimps (Stomatopoda: Crustacea)—a key to their fossil record. Palaios, 12:420438.CrossRefGoogle Scholar
Hoffmeister, A. P., and Kowalewski, M. 2001. Spatial and environmental variation in the fossil record of drilling predation: a case study from the Miocene of Central Europe. Palaios, 16:566579.2.0.CO;2>CrossRefGoogle Scholar
Hogler, J. A. 1992. Taphonomy and paleoecology of Shonisaurus popularis (Reptilia: Ichthyosauria). Palaios, 7:108117.CrossRefGoogle Scholar
Holland, S. M. 2000. The quality of the fossil record: a sequence stratigraphic perspective, p. 148168. In Erwin, D. H. and Wing, S. L. (eds.), Deep Time: Paleobiology's Perspective. The Paleontological Society.Google Scholar
House, M. R., and Senior, J. R. (eds.). 1981. The Ammonoidea. Academic Press, London.Google Scholar
Howard, J. D., Mayou, T. V., and Heard, R. W. 1977. Biogenic sedimentary structures formed by rays. Journal of Sedimentary Petrology, 47:339346.Google Scholar
Hua, S., and Buffetaut, E. 1997. Introduction, Part V: Crocodylia, p. 357374. In Callaway, J. and Nicholls, E. L. (eds.), Ancient Marine Reptiles. Academic Press, San Diego.CrossRefGoogle Scholar
Hughes, R. N., and Hughes, P. I. 1981. Morphological and behavioral aspects of feeding in the Cassidae (Tonnacea, Mesogastropoda). Malacologia, 20:385402.Google Scholar
Jablonski, D., and Bottjer, D. J. 1990. Onshore-offshore trends in marine invertebrate evolution, p. 2175. In Allmon, W. and Ross, R. D. (eds.), Causes of Evolution: A Paleontological Perspective. University of Chicago Press, Chicago.Google Scholar
Jablonski, D., Sepkoski, J. J. Jr., Bottjer, D. J., and Sheehan, P. M. 1983. Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science, 222:11231125.CrossRefGoogle ScholarPubMed
Jerardino, A., Castilla, J. C., Ramirez, J. M., and Hermosilla, N. 1992. Early coastal subsistence patterns in Central Chile: a systematic study of the marine-invertebrate fauna from the site of Curaumilla-1. Latin American Antiquity, 3:4362.CrossRefGoogle Scholar
Kabat, A. R. 1990. Predatory ecology of naticid gastropods with a review of shell boring predation. Malacologia, 32:155203.Google Scholar
Kardon, G. 1998. Evidence from the fossil record of an antipredatory exaptation: conchiolin layers in corbulid bivalves. Evolution, 52:6879.CrossRefGoogle ScholarPubMed
Karl, S., and Obrebski, S. 1976. The feeding biology of the bat ray, Myliobatis californica in Tomales Bay, California, p. 181186. In Simenstad, C. A. and Lipovski, S. J. (eds.), Fish Food Habit Studies. Washington Sea Grant, Seattle.Google Scholar
Kase, T., Johnson, P., Seilacher, A., and Boyce, J. 1998. Alleged mosasaur bite marks on Late Cretaceous ammonites are limpet (patellogastropod) home scars. Geology, 26:947950.2.3.CO;2>CrossRefGoogle Scholar
Kauffman, E. G. 1972. Ptychodus predation in a Cretaceous Inoceramus. Palaeontology, 15:439444.Google Scholar
Kauffman, E. G. 1990. Mosasaur predation on ammonites during the Cretaceous—an evolutionary history, p. 184189. In Boucot, A. J. (ed.), Evolutionary Paleobiology of Behaviour and Coevolution. Elsevier, Amsterdam.Google Scholar
Kauffman, E. G., and Kesling, R. V. 1960. An Upper Cretaceous ammonite bitten by a mosasaur. Contributions of the Museum of Paleontology, University of Michigan, 15:193248.Google Scholar
Keller, T. 1976. Magen- und Darminhalte von Ichthyosaurien des süddeutschen Posidonienschiefers. Neus Jahrbuch fur Geologie und Paläontologie Monatshefte, 5:266283.Google Scholar
Kelley, P. H. 1988. Predation by Miocene gastropods of the Chesapeake Group: stereotyped and predictable. Palaios, 3:436448.CrossRefGoogle Scholar
Kelley, P. H., and Hansen, T. A. 1993. Evolution of the naticid gastropod predator-prey system: an evaluation of the hypothesis of escalation. Palaios, 8:358375.CrossRefGoogle Scholar
Kelley, P. H., and Hansen, T. A. 2001. The role of ecological interactions in the evolution of naticid gastropods and their molluscan prey, p. 149170. In Allmon, W. D. and Bottjer, D. J. (eds.), Evolutionary Paleoecology. Columbia University Press, New York.Google Scholar
Kelley, P. H., Hansen, T. A., Graham, S. E., and Huntoon, A. G. 2001. Temporal patterns in the efficiency of naticid gastropod predators during the Cretaceous and Cenozoic of the United States Coastal Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 166:165176.CrossRefGoogle Scholar
Kier, P. M. 1977. The poor fossil record of the regular echinoid. Paleobiology, 3:168174.CrossRefGoogle Scholar
Kier, P. M. 1981. A bored Cretaceous echinoid. Journal of Paleontology, 55:656659.Google Scholar
Kier, P. M. 1982. Rapid evolution in echinoids. Palaeontology, 25:19.Google Scholar
Kirch, P. V. 1983. Man's role in modifying tropical and subtropical Polynesian ecosystems. Archaeology in Oceania, 18:2631.Google Scholar
Kitchell, J. A. 1986. the evolution of predatory-prey behavior: naticid gastropods and their molluscan prey, p. 88110. In Nitecki, M. and Kitchell, J. A. (eds.), Evolution of Animal Behavior: Paleontological and Field Approaches. Oxford University Press, Oxford.Google Scholar
Kitchell, J. A., Boggs, C. H., Kitchell, J. F., and Rice, J. A. 1981. Prey selection by naticid gastropods: experimental tests and application to the fossil record. Paleobiology, 7:533552.CrossRefGoogle Scholar
Kjaer, C. R., and Thomsen, E. 1999. Heterochrony in bourgueticrinid sea-lilies at the Cretaceous-Tertiary boundary. Paleobiology, 25:2940.Google Scholar
Knoll, A. S., Bambach, R. K., Grotzinger, J. P., and Canfield, D. 1996. Comparative Earth history and Late Permian mass extinction. Science, 273:452457.CrossRefGoogle ScholarPubMed
Kowalewski, M. 1993. Morphometric analysis of predatory drillholes. Palaeogeography, Palaeoclimatology, Palaeocology, 102:6988.CrossRefGoogle Scholar
Kowalewski, M., and Flessa, K. 1997. Predatory scars in the shells of a Recent lingulid brachiopod: paleontological and ecological implications. Acta Palaeontologica Polonica, 42:497532.Google Scholar
Kowalewski, M., Dulai, A., and Fürsich, F. T. 1998. A fossil record full of holes: the Phanerozoic history of drilling predation. Geology, 26(12):10911094.2.3.CO;2>CrossRefGoogle Scholar
Kröger, B. 2002. On the efficiency of the buoyancy apparatus in ammonoids: evidences from sublethal shell injuries. Lethaia, 35:6170.CrossRefGoogle Scholar
Kunze, J. C. 1983. Stomatopoda and the evolution of the Hoplocarida, p. 165188. In Schram, F. R., Crustacean Phylogeny. A. A. Balkema, Rotterdam.Google Scholar
Kvitek, R. G., Oliver, J. S., Degange, A. R., and Anderson, B. S. 1992. Changes in Alaskan soft-bottom prey communities along a gradient in sea otter predation. Ecology, 73:413428.CrossRefGoogle Scholar
Kvitek, R. G., Bowlby, C. E., and Staedler, M. 1993. Diet and foraging behavior of sea otters in southeast Alaska. Marine Mammal Science, 9:168181.CrossRefGoogle Scholar
Lauder, G. V. 1985. Aquatic feeding in lower vertebrates, p. 210229. In Hildebrand, M., Bramble, D. M., Liem, K. F., and Wake, D. B. (eds.), Functional Vertebrate Morphology. Belknap Press, Cambridge.Google Scholar
Lee, M. S. Y., and Caldwell, M. W. 2000. Adriosaurus and the affinities of Mosasaurs, Dolichosaurs, and Snakes. Journal of Paleontology, 74:915937.CrossRefGoogle Scholar
Lehmann, U. 1975. Über Nahrung und Ernahrungsweise der Ammoniten. Paläontologische Zeitschrift, 49:187195.CrossRefGoogle Scholar
Lewy, Z., and Samtleben, C. 1979. Functional morphology and palaeontological significance of the conchiolin layers in corbulid pelecypods. Lethaia, 12:341351.CrossRefGoogle Scholar
Lindberg, D., and Carlton, J. 1969. Intertidal marine mollusca of Southeast Farallon Island, San Francisco, California. Annual Report of the Western Society of Malacologists, 11:7.Google Scholar
Lindberg, D., and Kellogg, M. 1982. Bathymetric anomalies in the Neogene fossil record: the role of diving marine birds. Paleobiology, 8:402407.CrossRefGoogle Scholar
Lingham-Soliar, T. 1998a. Unusual death of a Cretaceous giant. Lethaia, 31:308310.CrossRefGoogle Scholar
Lingham-Soliar, T. 1998b. A new mosasaur Pluridens walkeri from the Upper Cretaceous, Maastrichtian of the Iullemmeden Basin, southwest Niger. Journal of Vertebrate Paleontology, 18:709717.CrossRefGoogle Scholar
Lingham-Soliar, T. 1999. The durophagous Mosasaurs (Lepidosauromorpha, Squamata) Globidens and Carinodens from the Upper Cretaceous of Belgium and The Netherlands. Palaeontological Journal, 33:638647.Google Scholar
Lingham-Soliar, T. 2001. The ichthyosaur integument: skin fibers, a means for a strong, flexible and smooth skin. Lethaia, 34:287302.CrossRefGoogle Scholar
Logan, A. 1974. Morphology and life habits of the Recent cementing bivalve Spondylus americanus Hermann from the Bermuda platform. Bulletin of Marine Science, 24:473492.Google Scholar
Lucas, S. 1997. Marine reptiles and Mesozic biochronology, p. 423434. In Callaway, J. and Nicholls, E. L. (eds.), Ancient Marine Reptiles. Academic Press, San Diego.CrossRefGoogle Scholar
Maddocks, R. E. 1988. One hundred million years of predation on ostracods: The fossil record in Texas, p. 637657. In Hanai, T., Ikeya, N., and Ishizaki, K. (eds.), Evolutionary Biology of Ostracoda. Elsevier, Amsterdam.Google Scholar
Maisey, J. G. 1982. The anatomy and relationships of Mesozoic hybodont sharks. American Museum Novitates, 2724:148.Google Scholar
Maisey, J. G. 1996. Discovering Fossil Fishes. Henry Holt, New York, 223 p.Google Scholar
Manning, R. B. 1995. Stomatopod Crustacea of Vietnam: The legacy of Raoul Serène. Crustacean Research, Special Number 4 (Tokyo: The Carcinological Society of Japan), 339 p.Google Scholar
Martill, D. 1986a. The preservation of marine vertebrates in the Lower Oxford Clay (Jurassic) of central England. Philosophical Transactions of the Royal Society of London, B, 311:155165.CrossRefGoogle Scholar
Martill, D. 1986b. The diet of Metriorhynchus, a Mesozoic marine crocodile. Neues Jahrbuch für Geologie und Palaeontologie, Monatshefte, 1986(10):621625.Google Scholar
Martill, D. 1990. Predation on Kosmoceras by semionotid fish in the Middle Jurassic Lower Oxford Clay of England. Palaeontology, 33:739742.Google Scholar
Martill, D., Taylor, M. A., Duff, K. L., Riding, J. B., and Bown, P. R. 1994. The trophic structure of the biota of the Peterborough Member, Oxford Clay Formation (Jurassic), UK. Journal of the Geological Society, London, 151:173194.CrossRefGoogle Scholar
Martin, J. E., and Bjork, P. R. 1987. Gastric resudues associated with the mosasaur Tylosaurus from the Late Cretaceous (Campanian) Pierre Shale, South Dakota. Dakoterra, 3:6870.Google Scholar
Martin, L. D., and Rothschild, B. 1989. Paleopathology and diving mosasaurs. American Scientist, 77:460467.Google Scholar
Massare, J. A. 1987. Tooth morphology and prey preference of Mesozoic marine reptiles. Journal of Vertebrate Paleontology, 7:121137.CrossRefGoogle Scholar
Massare, J. A. 1997. Introduction, Part VI: Faunas, Behavior, and Evolution, p. 401421. In Callaway, J. and Nicholls, E. L. (eds.), Ancient Marine Reptiles. Academic Press, San Diego.CrossRefGoogle Scholar
Massare, J. A. and Callaway, J. M. 1990. The affinities and ecology of Triassic ichthyosaurs. Geological Society of America Bulletin, 102:409416.2.3.CO;2>CrossRefGoogle Scholar
Matsukama, A. 1978. Fossil boreholes by shell-boring predators or commensals, I: Boreholes of capulid gastropods. Venus (Japan Journal of Malacology), 376:2945.Google Scholar
Mayfield, S., de Beer, E., and Branch, G. M. 2001. Prey preference and the consumption of sea urchins and juvenile abalone by captive rock lobsters (Jasus lalandii). Marine and Freshwater Research, 52:773780.CrossRefGoogle Scholar
McClintock, J. B., and Marion, K. R. 1993. Predation by the King Helmet (Cassis tuberosa) on six-holed sand dollars (Leodia sexiesperforata) at San Salvador, Bahamas. Bulletin of Marine Science, 52:10131017.Google Scholar
McCosker, J. E. 1975. Feeding behavior of Indo-Australian Hydrophiidae, p. 217232. In Dunson, W. A. (ed.), The Biology of Sea Snakes. University Park Press, Baltimore.Google Scholar
McRoberts, C. A. 2001. Triassic bivalves and the initial Mesozoic marine revolution: a role for predators. Geology, 29:359362.2.0.CO;2>CrossRefGoogle Scholar
Meenakshi, V. R., Martin, A. W., and Wilbur, K. M. 1974. Shell repair in Nautilus macromphalus. Marine Biology, 27:2735.CrossRefGoogle Scholar
Meyer, D. L. 1985. Evolutionary implications of predation on Recent comatulid crinoids. Paleobiology, 11:154164.CrossRefGoogle Scholar
Meyer, D. L., and Ausich, W. I. 1983. Biotic interactions among Recent crinoids and among fossil crinoids, p. 377427. In Tevesz, M. J. S. and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press, New York.CrossRefGoogle Scholar
Meyer, D. L., and Macurda, D. B. Jr. 1977. Adaptive radiation of the comatulid crinoids. Paleobiology, 3:7482.CrossRefGoogle Scholar
Milinkovitch, M. C. 1995. Molecular phylogeny of cetaceans prompts revision of morphological transformations. Trends in Ecology and Evolution, 10:328334.CrossRefGoogle ScholarPubMed
Milson, C. V. 1994. Saccocoma, a benthic crinoid from the Jurassic Solnhofen Limestone, Germany. Palaeontology, 37:121130.Google Scholar
Moreno, C. A. 2001. Community patterns generated by human harvesting on Chilean shores, a review: Aquatic Conservation. Marine and Freshwater Ecosystems, 11:1930.CrossRefGoogle Scholar
Moreno, C. A., Sutherland, J. P., and Jara, H. F. 1984. Man as a predator in the intertidal zone of southern Chile. Oikos, 42:155160.CrossRefGoogle Scholar
Mortimer, J. A. 1982. Feeding ecology of sea turtles. In Bjorndal, K. A. (ed.), Biology and Conservation of Sea Turtles. Smithsonian Institution Press, Washington, D.C. Google Scholar
Morton, B., and Chan, K. 1997. First report of shell boring predation by a member of the Nassariidae (Gastropoda). Journal of Molluscan Studies, 63:476–78.CrossRefGoogle Scholar
Moss, S. A. 1977. Feeding mechanisms in sharks. American Zoologist, 17 (2):355364.CrossRefGoogle Scholar
Motani, R., Rothschild, B. M., and Wahl, W. 1999. Large eyeballs in diving ichthyosaurs. Nature, 402:747.CrossRefGoogle Scholar
Motta, P. J., Hueter, R. E., Tricas, T. C., and Summers, A. P. 2002. Kinematic analysis of suction feeding in the nurse shark, Ginglymostoma cirratum (Orectolobiformes, Ginglymostomatidae). Copeia, 1:2438.CrossRefGoogle Scholar
de Muizon, C. 1993. Walrus-like feeding adaptation in a new cetacean from the Pliocene of Peru. Nature, 365:745748.CrossRefGoogle Scholar
Navarette, S. A., and Castilla, J. C. 1993. Predation by Norway rats in the intertidal zone of Central Chile. Marine Ecology Progress Series, 92:187199.CrossRefGoogle Scholar
Nebelsick, J. H. 1995. Comparative taphonomy of Clypeasteroids. Ecologae Geologicae Helvetiae, 88:685693.Google Scholar
Nebelsick, J. H. 1999. Taphonomic comparison between Recent and fossil sand dollars. Palaeogeography, Palaeoclimatology, Palaeoecology, 149:349358.CrossRefGoogle Scholar
Nebelsick, J. H., and Kowalewski, M. 1999. Drilling predation on Recent clypeasteroid echinoids from the Red Sea. Palaios, 14:127144.CrossRefGoogle Scholar
Nemoto, T. 1970. Feeding pattern of baleen whales in the ocean, p. 241252. In Steele, J. H. (ed.), Marine Food Chains. Oliver & Boyd, Edinburgh.Google Scholar
Nerini, M. 1984. A review of gray whale feeding ecology, p. 423450. In Jones, M. L., Swartz, S. L., and Leatherwood, S. (eds.), The Gray Whale Escrichtius robustus. Academic Press, Orlando.CrossRefGoogle Scholar
Neumann, C. 2000. Evidence of predation on Cretaceous sea stars from northwest Germany. Lethaia, 33:6570.CrossRefGoogle Scholar
Newton, C. R. 1983. Triassic origin of shell-boring gastropods. Geological Society of America Abstracts with Programs, 15:652653.Google Scholar
Nichol, D. 1965. Ecologic implications of living pelecypods with calcareous spines. Nautilus, 78:109115.Google Scholar
Nicholls, E. L. 1997. Introduction (to Part III: Testudines), p. 219223. In Callaway, J. and Nicholls, E. L. (eds.), Ancient marine reptiles. Academic Press, San Diego.CrossRefGoogle Scholar
Nielson, C. 1975. Observations on Buccinum undatum L. attacking bivalves and on prey responses with a short review of attack methods of other prosobranchs. Ophelia, 13:87108.CrossRefGoogle Scholar
Nixon, M. 1980. The salivary papilla of Octopus as an accessory radula for drilling shells. Journal of Zoology, 190:5357.CrossRefGoogle Scholar
Nixon, M. 1988. The feeding mechanisms and diets of cephalopods—Living and fossil, p. 642652. In Wiedmann, J. and Kullmann, J. (eds.), Cephalopods Present and Past. 2nd International Cephalopod Symposium, E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany.Google Scholar
Norris, K. S., Villa-Ramirez, B., Nichols, G., Wursig, B., and Miller, K. 1983. Lagoon entrance and other aggregations of gray whales, Eschrictius robustus , p. 259293. In Payne, R. (ed.), Behavior and Communication of Whales. Westview Press, Boulder, Colorado.Google Scholar
Norton, S. F. 1988. Role of the gastropod shell and operculum in inhibiting predation by fishes. Science, 241:9294.CrossRefGoogle ScholarPubMed
Norton, S. F. 1995. A functional approach to ecomorphological patterns of feeding in cottid fishes. Environmental Biology of Fishes, 44:6178.CrossRefGoogle Scholar
Oji, T. 1986. Skeletal variation related to arm regeneration in Metacrinus and Saracrinus, Recent stalked crinoids. Lethaia, 19:355360.CrossRefGoogle Scholar
Oji, T. 1996. Is predation intensity reduced with increasing depth?—Evidence from the west Atlantic stalked crinoid Endoxocrinus parrae (Gervais) and implications for the Mesozoic Marine Revolution. Paleobiology, 22:339351.CrossRefGoogle Scholar
On, T. 2001. Fossil record of echinoid regeneration. Microscopy, Research and Technique, 55(6):397402.Google Scholar
On, T., and Okamoto, T. 1994. Arm autotomy and arm branching pattern as anti-predatory adaptations in stalked and stalkless crinoids. Paleobiology, 20:2739.Google Scholar
O'Keefe, F. R. 2002. The evolution of plesiosaur and pliosaur morphotypes in the Plesiosauria (Reptilia: Sauropterygia). Paleobiology, 28:101112.2.0.CO;2>CrossRefGoogle Scholar
Oliver, J. S., Slattery, P. N., O'conner, E. F., and Lowry, I. F. 1983. Walrus feeding in the Bering Sea; a benthic perspective. Fisheries Bulletin, 81:501512.Google Scholar
Olson, S. L., and Hasegawa, Y. 1979. Fossil counterparts of giant penguins from the north Pacific. Science, 206:688689.CrossRefGoogle ScholarPubMed
Olson, S. L., and Steadman, D. W. 1978. The fossil record of the Glareolidae and Haematopodidae (Aves: Charadriformes). Proceedings of the Biological Society of Washington, 91:972981.Google Scholar
Orr, V. 1962. The drilling habit of Capulus danieli (Crosse) (Mollusca: Gastropoda). Veliger, 5:6367.Google Scholar
Oyen, C. W., and Portell, R. W. 2001. Diversity patterns and biostratigraphy of Cenozoic echinoderms from Florida. Palaeogeography, Palaeoclimatology, and Palaeoecology, 166:193218.CrossRefGoogle Scholar
Packard, A. 1972. Cephalopods and fish: The limits of convergence. Biological Reviews, 47:241307.CrossRefGoogle Scholar
Paine, R. T. 1963. Ecology of the brachiopod Glottidia pyramidata. Ecological Monographs, 33:187213.CrossRefGoogle Scholar
Palmer, A. R. 1979. Fish predation and the evolution of gastropod shell sculpture: experimental and geographic evidence. Evolution, 33:697713.CrossRefGoogle ScholarPubMed
Palmer, T. J. 1982. Cambrian to Cretaceous changes in hardground communities. Lethaia, 15:309323.CrossRefGoogle Scholar
Parris, D. C., Dobie, J. L., and McPherson, A. B. 2000. A fossil marine turtle from east central Louisiana. Texas Journal of Science, 52:230234.Google Scholar
Patterson, C. 1994. Bony fishes, p. 5784. In Prothero, D. R. and Schoch, R. M. (eds.), Major Features of Vertebrate Evolution. Short Courses in Paleontology, 7. Paleontological Society, Knoxville, Tennessee.Google Scholar
Pether, J. 1995. Belichnus new ichnogenus, a ballistic trace on mollusc shells from the Holocene of the Benguela region, South Africa. Journal of Paleontology, 69:171181.CrossRefGoogle Scholar
Pilson, M. E., and Taylor, P. B. 1961. Hole drilling by octopus. Science, 134:13661368.CrossRefGoogle ScholarPubMed
Plotkin, P. T., Wicksten, M. K., and Amos, A. F. 1993. Feeding ecology of the loggerhead sea turtle Caretta caretta in the Northwestern Gulf of Mexico. Marine Biology, 115:115.CrossRefGoogle Scholar
Pollard, J. E. 1968. The gastric contents of an ichthyosaur from the Lower Lias of Lyme Regis, Dorset. Palaeontology, 11:376388.Google Scholar
Ponder, W. F., and Taylor, J. D. 1992. Predatory shell drilling by two species of Austroginella (Gastropoda: Marginellidae). Journal of Zoology, London, 228:317328.CrossRefGoogle Scholar
Prezant, R. S. 1983. Auto-drilling in the oyster drill Thais haemastoma (Muricidae). The Nautilus, 97:8184.Google Scholar
Raffaelli, D. G. 1978. The relationship between shell injuries, shell thickness, and habitat characteristics of the intertidal snail Littorina rudis Maton. Journal of Molluscan Studies, 44:166170.Google Scholar
Ramsay, K., Richardson, C. A., and Kaiser, M. J. 2001. Causes of shell scarring in dog cockles, Glycymeris glycymeris L. Journal of Sea Research, 45:131139.CrossRefGoogle Scholar
Rathbun, R. 1930. Fossil decapod crustaceans from Mexico. Proceedings of the United States National Museum, 78:110.CrossRefGoogle Scholar
Rathbun, R. 1935. Fossil Crustacea of the Atlantic and Gulf Coastal Plain. Geological Society of America Special Paper, 2:1160.Google Scholar
Ray, M., and Stoner, A. W. 1995. Predation on a tropical spinose gastropod: the role of shell morphology. Journal of Experimental Marine Biology and Ecology, 187:207222.CrossRefGoogle Scholar
Repenning, C. A. 1976. Adaptive evolution of sea lions and walruses. Systematic Zoology, 25:375390.CrossRefGoogle Scholar
Reyment, R. A. 1971. Introduction to Quantitative Palaeoecology. Elsevier, Amsterdam.Google Scholar
Ricketts, E. F., Calvin, J., and Hedgepeth, J. W. 1985. Between Pacific Tides. Stanford University Press, Stanford, 652 p.Google Scholar
Rieppel, O. 1997. Introduction (to Part II: Sauropterygia), p. 107119. In Callaway, J. and Nicholls, E. L. (eds.), Ancient marine reptiles. Academic Press, San Diego.CrossRefGoogle Scholar
Rieppel, O. 1998. Corosaurus alcovensis Case, and the phylogenetic interrelationships of Triassic stem-group Sauropterygia. Zoological Journal of the Linnean Society, 124:141.CrossRefGoogle Scholar
Rieppel, O. 1999. Phylogeny and paleobiogeography of Triassic Sauropterygia: problems solved and unresolved. Palaeogeography, Palaeoclimatology, and Palaeoecology, 153:115.CrossRefGoogle Scholar
Rieppel, O. 2002. Feeding mechanics in Triassic stem-group sauropterygians: the anatomy of a successful invasion of Mesozoic seas. Zoological Journal of the Linnean Society, 135:3363.CrossRefGoogle Scholar
Robba, E., and Ostinelli, F. 1975. Studi paleontologici sul Pliocene Ligure, I: Testimonmianze di predazione sui molluschi Pliocenici di Albenga. Rivista Italiana Paleontologia, 81:309318.Google Scholar
Robison, R. A., and Kaesler, R. L. 1987. Phylum Arthropoda, p. 205267. In Boardman, R. S., Cheetham, A. H., and Rowell, A. J. (eds.), Fossil Invertebrates. Blackwell Scientific Publications, Palo Alto, Oxford, London.Google Scholar
Rosen, B. R. 1988. Progress, problems, and patterns in the biogeography of reef corals and other tropical marine organisms. Helgoland Wissenschaftlichen Meeresuntersuchen, 42:269301.CrossRefGoogle Scholar
Ross, A., Lewis, J. E., and Scolaro, R. J. 1964. New Eocene decapods from Florida. Quarterly Journal of the Florida Academy of Sciences, 27:187196.Google Scholar
Rothschild, B. M., and Martin, L. D. 1990. Shark-induced infectious spondylitis; evidence in the Cretaceous record. Abstracts of Papers; 5th annual meeting, Society of Vertebrate Paleontology, 10 (3):39A.Google Scholar
Roy, K., Miller, D. J., and Labarbera, M. 1994. Taphonomic bias in analyses of drilling predation: effects of gastropod drill holes on bivalve shell strength. Palaios, 9:413421.CrossRefGoogle Scholar
Rudwick, M. J. S. 1965. Sensory spines in the Jurassic brachiopod Acanthothirus. Palaeontology, 8:604617.Google Scholar
Rudwick, M. J. S. 1970. Living and Fossil Brachiopods. Hutchinson University Library, London, 199 p.Google Scholar
Russo, R. A. 1975. Observations on the food habits of leopard sharks (Triakis semifasciata) and brown smoothhounds (Mustelus henlei). California Department of Fish and Game, 61:95103.Google Scholar
Sander, P. M. 1989. The pachypleurosaurids (Reptilia: Nothosauria) from the Middle Triassic of Monte San Giorgio (Switzerland), with the description of a new species. Philosophical Transactions of the Royal Society of London, B, 325:561670.CrossRefGoogle Scholar
Sander, P. M. 1997. The paleobiogeography of Shastasaurus , p. 1743. In Callaway, J. and Nicholls, E. L. (eds.), Ancient Marine Reptiles. Academic Press, San Diego.CrossRefGoogle Scholar
Sato, T., and Tanabe, K. 1998. Cretaceous plesiosaurs ate ammonites. Nature, 394:629630.CrossRefGoogle Scholar
Saunders, W. B., and Ward, P. D. 1987. Ecology, distribution, and population characteristics of Nautilus , p. 137162. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus: The Biology and Paleobiology of a Living Fossil. Plenum Press, New York.CrossRefGoogle Scholar
Saunders, W. B., Knight, R. L., and Bond, P. N. 1991. Octopus predation on Nautilus: Evidence from Papua New Guinea. Bulletin of Marine Science, 49:280287.Google Scholar
Savage, R. J. 1976. Review of the early Sirenia. Systematic Zoology, 25:344351.CrossRefGoogle Scholar
Schäfer, W. 1972. Ecology and Paleoecology of Marine Environments. University of Chicago Press, Chicago, 568 p.Google Scholar
Schindel, D. E., Vermeij, G. J., and Zipser, E. 1982. Frequencies of repaired shell fractures among the Pennsylvanian gastropods of north-central Texas. Journal of Paleontology, 56:729740.Google Scholar
Schindewolf, O. H. 1958. Über Aptychen (Ammonoidea). Palaeontolographica, A, 111:146.Google Scholar
Schneider, J. A. 1988. Frequency of arm regeneration of comatulids in relation to life habit, p. 97102. In Burke, R. D., Mladenov, P. V., Lambert, P., and Parsley, R. L. (eds.), Proceedings of the 6th international Echinoderm Conference, Victoria, British Columbia.Google Scholar
Schneider, J. A., and Carter, J. G. 2001. Evolution and phylogenetic significance of Cardioidean shell microstructure (Mollusca: Bivalvia). Journal of Paleontology, 75:607643.CrossRefGoogle Scholar
Schoener, T. W. 1979. Inferring properties of predation and other injury-producing agents from injury frequencies. Ecology, 60:11101115.CrossRefGoogle Scholar
Schram, F. R. 1969. Polyphyly in Eumalacostraca? Crustaceana, 16:243350.CrossRefGoogle Scholar
Schram, F. R. 1979. The genus Archaeocaris, and a general review of the Palaeostomatopoda (Hoplocarida: Malacostraca). Transactions of the San Diego Society of Natural History, 19:5766.Google Scholar
Schram, F. R. 1986. Crustacea. Oxford University Press, New York, 606 p.Google Scholar
Schwimmer, D. R., Stewart, J. D., and Williams, G. D. 1997. Scavenging by sharks of the genus Squalicorax in the Late Cretaceous of North America. Palaios, 12:7183.CrossRefGoogle Scholar
Seilacher, A. 1985. Bivalve morphology and function, p. 88101. In Bottjer, D. J., Hickman, C. S., and Ward, P. D. (eds.), Mollusks: Notes for a Short Course. University of Tennessee Department of Geological Sciences Studies in Geology 13.Google Scholar
Seilacher, A. 1998. Mosasaur, limpets or diagenesis; how Placenticeras shells got punctured. Mitteilungen aus dem Museum für Naturkunde in Berlin, Geowissenschaftliche Reiche, 1:93102.Google Scholar
Sheldon, A. 1997. Ecological implications of mosasaur bone microstructure, p. 333354. In Callaway, J. and Nicholls, E. L. (eds.), Ancient Marine Reptiles. Academic Press, San Diego.CrossRefGoogle Scholar
Shimada, K. 1997. Paleoecological relationships of the Late Cretaceous lamniform shark, Cretoxyrhina mantelli (Agassiz). Journal of Paleontology, 71 (5):926933.CrossRefGoogle Scholar
Shoup, J. B. 1968. Shell opening by crabs of the genus Calappa. Science, 160:887888.CrossRefGoogle ScholarPubMed
Simenstad, C. A., Estes, J. A., and Kenyen, K. L. 1978. Aleuts, sea otters, and alternative stable state communities. Science, 200:403411.CrossRefGoogle Scholar
Simms, M. J. 1990. The radiation of post-Paleozoic echinoderms, p. 287304. In Taylor, P. D. and Larwood, G. P. (eds.), Major Evolutionary Radiations. Clarendon Press, Oxford.Google Scholar
Simpson, G. G. 1975. Fossil penguins, p. 1941. In Stonehouse, B. (ed.), The Biology of Penguins. MacMillan, London.CrossRefGoogle Scholar
Skelton, P. W., Crame, J. A., Morris, N. J., and Harper, E. M. 1990. Adaptive divergence and taxonomic radiation in post-Palaeozoic bivalves, p. 91117. In Taylor, P. D. and Larwood, G. P. (eds.), Major Evolutionary Radiations. The Systematics Association, Special Volume 42, Clarendon Press, Oxford.Google Scholar
Sliter, W. V. 1971. Predation on benthic foraminifers. Journal of Foraminferal Research, 1:2029.CrossRefGoogle Scholar
Smith, A. 1952. Shells from the bird guano of southeast Farallon Island, California, with description of a new specis of Liotia. Proceedings of the California Academy of Sciences, 27:383387.Google Scholar
Smith, B. G. 1942. The heterodontid sharks: their natural history and the external development of Heterodontus japonicaus based on notes and drawings by Bashford Dean. The Bashford Dean Memorial Volume: Archaic Fishes. American Museum of Natural History, 8:649770.Google Scholar
Sohl, N. F. 1969. The fossil record of shell boring by snails, p. 725734. In Carriker, M. R., et al. (eds.), Penetration of calcium carbonate substrates by lower plants and invertebrates. American Zoologist, 9.Google Scholar
Spanier, E. 1986. Cannibalism in muricid snails as a possible explanation for archaeological findings. Journal of Archaeological Science, 13:463468.CrossRefGoogle Scholar
Spanier, E. 1987. A fossil record of shell boring: possible evidence for sea level changes in the Red Sea. Estuarine, Coastal and Shelf Science, 24:873879.CrossRefGoogle Scholar
Speden, I. A. 1971. Notes on New Zealand fossil mollusca, 2: Predation on New Zealand Cretaceous species of Inoceramus (Bivalvia). New Zealand Journal of Geology and Geophysics, 14:5660.CrossRefGoogle Scholar
Speed, E. 1969. Prehistoric shell collectors. South African Archaeological Bulletin, 24:193196.CrossRefGoogle Scholar
Stanley, S. M. 1970. Relation of shell form to life habits of the Bivalvia (Mollusca). Memoir of the Geological Society of America, 125:1296.CrossRefGoogle Scholar
Stanley, S. M. 1977. Rates, trends, and patterns of evolution in the Bivalvia, p. 209250. In Hallam, A. (ed.), Patterns of Evolution as Illustrated by the Fossil Record. Elsevier, Amsterdam.CrossRefGoogle Scholar
Stehlik, L. L. 1993. Diets of the brachyuran crabs Cancer irroratus, C. borealis, and Ovalipes ocellatus in the New York Bight. Journal of Crustacean Biology, 13:723735.CrossRefGoogle Scholar
Stewart, J. D., and Carpenter, K. 1990. Examples of vertebrate predation on cephalopods in the Late Cretaceous of the Western Interior, p. 203207. In Boucot, A. J. (ed.), Evolutionary Paleobiology of Behavior and Coevolution. Elsevier, Amsterdam.Google Scholar
Stone, H. M. I. 1998. On predator deterrence by pronounced shell ornament in epifaunal bivalves. Palaeontology, 41:10511068.Google Scholar
Storrs, G. W. 1993. Function and phylogeny in sauropterygian (Diapsida) evolution. American Journal of Science, 293A:6390.CrossRefGoogle Scholar
Tarlo, L. B. 1959. Pliosaurus brachyspondylus from the Kimmeridge Clay. Palaeontology, 1:283291.Google Scholar
Tasch, P. 1980. Paleobiology of the Invertebrates: Data Retrieval from the Fossil Record. John Wiley, New York, 975 p.Google Scholar
Taylor, J. D. 1970. Feeding habits of predatory gastropods in a Tertiary (Eocene) molluscan assemblage from the Paris Basin. Palaeontology, 13:254260.Google Scholar
Taylor, J. D. 1981. The evolution of predators in the Late Cretaceous and their ecological significance, p. 229240. In Forey, P. L. (ed.), The Evolving Biosphere. British Museum (Natural History) and Cambridge University Press.Google Scholar
Taylor, J. D., Cleevely, R. D., and Taylor, C. N. 1980. Food specialization and the evolution of predatory prosobranch gastropods. Palaeontology, 23:375409.Google Scholar
Taylor, J. D., Cleevely, R. D., and Morris, N. J. 1983. Predatory gastropods and their activities in the Blackdown Greensand (Albian) of England. Palaeontology, 26:521553.Google Scholar
Taylor, J. D., Kennedy, W. J., and Hall, A. 1969. The shell structure and mineralogy of the bivalvia—Introduction, Nuculacea-Trigonacea. Bulletin of the British Museum of Natural History, Zoology, 3:1125.Google Scholar
Taylor, M. A. 1992. Functional anatomy of the head of the large aquatic predator Rhomaleosaurus zetlandicus (Plesiosauria, Reptilia) form the Toarcian (Lower Jurassic) of Yorkshire, England. Philosophical Transactions of the Royal Society of London, B, 335:247280.CrossRefGoogle Scholar
Taylor, M. A. 1994. Stone, bone, or blubber? Buoyancy control strategies in aquatic tetrapods, p. 151161. In Maddock, L., Bone, Q., and Rayner, J. M. V. (eds.), Mechanics and Physiology of Animal Swimming. Cambridge University Press, Cambridge, England.CrossRefGoogle Scholar
Taylor, M. A. 2000. Functional significance of bone ballast in the evolution of buoyancy control strategies by aquatic tetrapods. Historical Biology, 14:1531.CrossRefGoogle Scholar
Taylor, M. A., and Cruickshank, A. R. I. 1993. Cranial anatomy and functional morphology of Pliosaurus brachyspondylus (Reptilia: Plesiosauria) from the Upper Jurassic of Westbury, Wiltshire. Philosophical Transactions of the Royal Society of London, B, 341:399418.CrossRefGoogle Scholar
Teichert, C., and Serventy, D. L. 1947. Deposits of shells transported by birds. American Journal of Science, 245:322328.CrossRefGoogle Scholar
Teichert, C., and Matsumoto, T. 1987. The ancestry of the genus Nautilus , p. 2532. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus: The Biology and Paleobiology of a Living Fossil. Plenum Press, New York.CrossRefGoogle Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of the marine benthos, p. 479595. In Tevesz, M. J. S. and McCall, P. J. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press, New York.CrossRefGoogle Scholar
Theis, D., and Reif, W. E. 1985. Phylogeny and evolutionary ecology of Mesozoic Neoselachii. Neues Jahrbuch fur Geologie und Palaeontologie Abhandlungen, 169:331369.Google Scholar
Thewissen, J. G. M., Williams, E. M., Roe, L. J., and Hussain, S. T. 2001. Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls. Nature, 413:277281.CrossRefGoogle ScholarPubMed
Tomas, J. F., Aznar, J., and Raga, J. A. 2001. Feeding ecology of the loggerhead turtle Caretta caretta in the western Mediterranean. Journal of Zoology (London), 255(4):525532.CrossRefGoogle Scholar
Trewin, N. H., and Welsh, W. 1972. Transport, breakage, and sorting of the bivalve Mactra corallina on Aberdeen Beach, Scotland. Palaeogeography, Palaeoclimatology, Palaeoecology, 12:193204.CrossRefGoogle Scholar
Tschanz, K. 1989. Lariosaurus buzzii n. sp. from the Middle Jurassic of Monte San Giorgio (Switzerland), with comments on the classification of nothosaurs. Palaeontographica, A208:153179.Google Scholar
Tsujita, C. J., and Westermann, G. E. G. 2001. Were limpets or mosasaurs responsible for the perforations in the ammonite Placenticeras? Palaeogeography, Palaeoclimatology, Palaeoecology, 169:245270.CrossRefGoogle Scholar
Urrutia, G. X., and Navarro, J. M. 2001. Patterns of shell penetration by Chorus giganteus juveniles (Gastropoda: Muricidae) on the mussel Semimytilus algosus. Journal of Experimental Marine Biology and Ecology, 258:141153.CrossRefGoogle ScholarPubMed
Valentine, J. W. 1973. Evolutionary Paleoecology of the Marine Biosphere. Prentice-Hall, Englewood Cliffs, New Jersey, 511 p.Google Scholar
Vale, F. K., and Rex, M. A. 1988. Repaired shell damage in deep-sea prosobranch gastropods from the western North Atlantic. Malacologia, 28:6579.Google Scholar
Vale, F. K., and Rex, M. A. 1989. Repaired shell damage in a complex of rissoid gastropods from the upper continental slope south of New England. The Nautilus, 103:105108.Google Scholar
Vance, R. R. 1978. A mutualistic interaction between a sessile marine clam and its epibionts. Ecology, 59:679685.CrossRefGoogle Scholar
Vannier, J., Abe, K., and Ikuta, K. 1998. Feeding in myodocopid ostracods: functional morphology and laboratory observations from videos. Marine Biology, 132:391408.CrossRefGoogle Scholar
Van Blaricom, G. R., and Estes, J. A. 1988. The Community Ecology of Sea Otters. Ecological Studies, 65, Springer-Verlag, Berlin, 247 p.Google Scholar
Van Zyl, R. F., Mayfield, S., Pulfrich, A., and Griffiths, C. L. 1998. Predation by West Coast rock lobsters (Jasus lalandii) on two species of winkle (Oxystele sinensis and Turbo cidaris). South African Journal of Zoology, 33:203209.CrossRefGoogle Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: Evidence from snails, predators, and grazers. Paleobiology, 3:245258.CrossRefGoogle Scholar
Vermeij, G. J. 1978. Biogeography and Adaptation, Patterns in Marine Life. Harvard University Press, Cambridge, 332 p.Google Scholar
Vermeij, G. J. 1982. Gastropod shell form, breakage, and repair in relation to predation by the crab Calappa. Malacologica, 23:112.Google Scholar
Vermeij, G. J. 1983. Shell breaking predation through time, p. 649669. In Tevesz, M. J. S. and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press, New York.CrossRefGoogle Scholar
Vermeij, G. J. 1987. Evolution and Escalation. Princeton University Press, Princeton, NJ, 527 p.Google Scholar
Vermeij, G. J. 1996. Marine biological diversity: muricid gastropods as a case study, p. 355375. In Jablonski, D. I., Erwin, D. H., and Lipps, J. H. (eds.), Evolutionary Paleobiology. Chicago University Press, Chicago.Google Scholar
Vermeij, G. J., and Carlson, S. 2000. The muricid gastropod subfamily Rapaninae: phylogeny and ecological history. Paleobiology, 26:1946.2.0.CO;2>CrossRefGoogle Scholar
Vermeij, G. J., Schindel, D., and Zipser, E. 1981. Predation through geological time: evidence from gastropod shell repair. Science, 214:10241026.CrossRefGoogle ScholarPubMed
Vermeij, G. J., Zipser, E., and Dudley, E. C. 1980. Predation in time and space: Peeling and drilling in terebrid gastropods. Paleobiology, 6:352364.CrossRefGoogle Scholar
Vermeij, G. J., Zipser, E., and Zardini, R. 1982. Breakage-induced shell repair in some gastropods from the Upper Triassic of Italy. Journal of Paleontology, 56:233235.Google Scholar
Voihl, G. 1990. Piscivorous fishes of the Solnhofen Limestone, p. 287303. In Boucot, A. J. (ed.), Evolutionary Paleobiology of Behavior and Coevolution. Elsevier, Amsterdam.Google Scholar
Vokes, E. H. 1971. The geologic history of the Muricinae and the Ocenebrinae. Echo, 4:3754.Google Scholar
Vokes, E. H. 1990. Cenozoic Muricidae of the western Atlantic region, Part VIII—Murex s.s., Haustellum, Chicoreus, and Hexaplex; additions and corrections. Tulane Studies in Geology and Paleontology, 23:196.Google Scholar
Voris, H. K., and Voris, H. H. 1983. Feeding strategies in marine snakes: an analysis of evolutionary, morphological, behavioral and ecological relationships. American Zoologist, 23:411425.CrossRefGoogle Scholar
Wainwright, S. A., Biggs, W. D., Currey, J. D., and Gosline, J. M. 1982. Mechanical design in organisms. Princeton University Press, Princeton, New Jersey, 423 p.Google Scholar
Walker, S. E. 1990. Biological taphonomy and gastropod temporal dynamics, p. 391421. In Miller, W. III (ed.), Paleocommunity Temporal Dynamics: The Long-term Development of Multispecies Assemblies. The Paleontological Society Special Publication, 5.Google Scholar
Walker, S. E. 1991. Taphonomy and paleoecology of Villamil fossil megagastropods of Isla Isabella, p. 423437. In James, M. J. (ed.), Galapagos Marine Invertebrates. Plenum Press, New York.CrossRefGoogle Scholar
Walker, S. E. 2001. Palaeoecology of gastropods preserved in turbiditic slope deposits from the Upper Pliocene of Ecuador. Palaeogeography, Palaeoclimatology, Palaeoecology, 166:141163.CrossRefGoogle Scholar
Walker, S. E., Parsons-Hubbard, K., Powell, E., and Brett, C. E. 2002. Predation on experimentally deployed molluscan shells from shelf to slope depths in a tropical carbonate environment. Palaios, 17:147170.2.0.CO;2>CrossRefGoogle Scholar
Walker, S. E., and Voight, J. 1994. Paleoecologic and taphonomic potential of deep sea gastropods. Palaios, 9:4859.CrossRefGoogle Scholar
Walter, R. C., Buffler, R. T., Bruggemann, J. H., Guillaume, M. M., Berhe, S. M., Negassi, B., Libsekal, Y., Cheng, H., Edwards, R. L., Von Casel, R., Neraudeau, D., and Gagnon, M. 2000. Early human occupation of the Red Sea coast of Eritrea during the last interglacial. Nature, 405:6569.CrossRefGoogle ScholarPubMed
Ward, D. J., and Hollingworth, N. T. J. 1990. The first record of a bitten ammonite from the Middle Oxford Clay (Callovian, Middle Jurassic) of Bletchley, Buckinghamshire. Mesozoic Research, 2:153161.Google Scholar
Ward, P. D. 1981. Shell sculpture as a defensive adaptation in ammonoids. Paleobiology, 7:96100.CrossRefGoogle Scholar
Ward, P. D. 1986. Cretaceous ammonite shell shapes. Malacologia, 27:328.Google Scholar
Ward, P. D. 1987. The Natural History of Nautilus. Allen & Unwin, Boston, 267 p.Google Scholar
Ward, P. D., and Signor, P. W. III. 1983. Evolutionary tempo in Jurassic and Cretaceous ammonites. Paleobiology, 9:183198.CrossRefGoogle Scholar
Weems, R. E. 1988. Paleocene turtles from the Aquia and Brightseat formations, with a discussion of their bearing on sea turtle evolution and phylogeny. Proceedings of the Biological Society of Washington, 101(1):109145.Google Scholar
Welles, S. P. 1943. Elasmosaurid plesiosaurs with description of new material from California and Colorado. Memoirs of the University of California, 13:125254.Google Scholar
Westermann, G. E. G. 1996. Ammonoid life and habitat. In Landmam, N. H., Tanabe, K., and Davis, R. A. (eds.), Ammonoid Paleobiology. Plenum Press, New York.Google Scholar
Westphal, F. 1988. Pflasterzahnsaurier (Placodonten) aus dem süddeutschen Muschelkalk (Mitteltrias), p. 151165. In Hagdorn, H. (ed.), Neue Forschungen zur Erdgeschichte von Crailsheim. Goldschneck, Korb (Stuttgart).Google Scholar
Wetzel, W. 1960. Nachtrag zum Fossilarchiv der Fuiriquina-Schichten. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 10:439446.Google Scholar
Whitmore, F. C. Jr., and Sanders, A. E. 1976. Review of the Oligocene cetacea. Systematic Zoology, 25:304320.CrossRefGoogle Scholar
Wiedman, L. A., Feldmann, R. L., Lee, D. E., and Zinsmeister, W. J. 1988. Brachiopoda from the La Meseta Formation (Eocene), Seymour Island, Antarctica, p. 531539. In Feldmann, R. M. and Woodburn, M. O. (eds.), Geology and Paleontology of the Seymour Island, Antarctic Penninsula. Geological Society of America Memoir 169.Google Scholar
Wilber, K. M., and Simkiss, K. 1968. Calcified shells, p. 229295. In Florkin, M. and Stotz, E. H. (eds.), Comprehensive Biochemistry, Volume 26, Part A, Extracellular and Supporting Structures. Elsevier, Amsterdam.Google Scholar
Wilga, C. D., and Motta, P. J. 2000. Durophagy in sharks: feeding mechanics of the Hammerhead Sphyra tiburo. The Journal of Experimental Biology, 203:27812796.Google Scholar
Williams, A. 1996. Taxonomy and evolution, p. 1321. In Factor, J. R. (ed.), Biology of the Lobster, Homerus americanus. Academic Press, San Diego.Google Scholar
Williston, S. W., and Moodie, R. L. 1917. Ogmodirus martinii, a new plesiosaur from the Cretaceous of Kansas. The Kansas University Science Bulletin, 10:6173.Google Scholar
Wilson, M. A., and Palmer, T. J. 1990. A review of evolutionary trends in carbonate hardground communities. The Paleontological Society Special Publication, 5:137152.Google Scholar
Wilson, M. A., and Palmer, T. J. 1992. Hardgrounds and Hardground Faunas. University of Wales, Aberystwyth Institute of Earth Studies Publication, 9:1131.Google Scholar
Wodinsky, J. 1969. Penetration of the shell and feeding on gastropods, p. 9971010. In Carriker, M. R. et al. (eds.), Penetration of calcium carbonate substrates by lower plants and invertebrates. American Zoologist, 9.Google Scholar
Woelke, C. E. 1957. The flatworm Pseudostylochus ostreophagus Hyman, a predator of oysters. National Shellfish Association Proceedings, 47:6267.Google Scholar
Woodcock, T. C., and Kelley, P. H. 2001. Predation on irregular echinoids (Eocene) from the Castle Hayne Limestone, Atlantic Coastal Plain (southeastern North Carolina). Geological Society of America, Southeastern Section, Abstracts with Programs, 33:1516.Google Scholar
Yamaguchi, A., and Taniuchi, T. 2000. Food variations and ontogenetic dietary shift of starspotted-dogfish Mustelus manazo at five locations in Japan and Taiwan. Fisheries Science, 66:10391048.CrossRefGoogle Scholar
Zinsmeister, W. J. 1980. Observations on the predation of the clypeasteroid echinoid, Monophoraster darwin, from the Upper Miocene Enterrios Formation, Patagonia, Argentina. Journal of Paleontology, 54:910912.Google Scholar
Cited by