Skip to main content

Impact of Early Environment on Children's Mental Health: Lessons From DNA Methylation Studies With Monozygotic Twins

  • Julian Chiarella (a1), Richard E. Tremblay (a2) (a3) (a4), Moshe Szyf (a5), Nadine Provençal (a6) and Linda Booij (a1) (a4) (a7) (a8)...

Over the past decade, epigenetic analyses have made important contributions to our understanding of healthy development and a wide variety of adverse conditions such as cancer and psychopathology. There is increasing evidence that DNA methylation is a mechanism by which environmental factors influence gene transcription and, ultimately, phenotype. However, differentiating the effects of the environment from those of genetics on DNA methylation profiles remains a significant challenge. Monozygotic (MZ) twin study designs are unique in their ability to control for genetic differences because each pair of MZ twins shares essentially the same genetic sequence with the exception of a small number of de novo mutations and copy number variations. Thus, differences within twin pairs in gene expression and phenotype, including behavior, can be attributed in the majority of cases to environmental effects rather than genetic influence. In this article, we review the literature showing how MZ twin designs can be used to study basic epigenetic principles, contributing to understanding the role of early in utero and postnatal environmental factors on the development of psychopathology. We also highlight the importance of initiating longitudinal and experimental studies with MZ twins during pregnancy. This approach is especially important to identify: (1) critical time periods during which the early environment can impact brain and mental health development, and (2) the specific mechanisms through which early environmental effects may be mediated. These studies may inform the optimum timing and design for early preventive interventions aimed at reducing risk for psychopathology.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Impact of Early Environment on Children's Mental Health: Lessons From DNA Methylation Studies With Monozygotic Twins
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Impact of Early Environment on Children's Mental Health: Lessons From DNA Methylation Studies With Monozygotic Twins
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Impact of Early Environment on Children's Mental Health: Lessons From DNA Methylation Studies With Monozygotic Twins
      Available formats
Corresponding author
address for correspondence: Richard E. Tremblay, PhD, Centre de Recherche du CHU Sainte-Justine, 3175 Chemin Côte Ste-Catherine, Montréal, QC H3T1C5, Canada. E-mail:
Hide All
Arloth J., Bogdan R., Weber P., Frishman G., Menke A., Wagner K. V., . . . Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. (2015). Genetic differences in the immediate transcriptome response to stress predict risk-related brain function and psychiatric disorders. Neuron, 86, 11891202.
Barker D. J. (2004). Developmental origins of adult health and disease. Journal of Epidemiology and Community Health, 58, 114115.
Bateson P., Barker D., Clutton-Brock T., Deb D., D’Udine B., Foley R. A., . . . Sultan S. E. (2004). Developmental plasticity and human health. Nature, 430, 419421.
Bell J. T., Tsai P. C., Yang T. P., Pidsley R., Nisbet J., Glass D., . . . Deloukas P. (2012). Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genetics, 8, e1002629.
Boks M. P., Derks E. M., Weisenberger D. J., Strengman E., Janson E., Sommer I. E., . . . Ophoff R. A. (2009). The relationship of DNA methylation with age, gender and genotype in twins and healthy controls. PLoS One, 4, e6767.
Booij L., Casey K. F., Antunes J. M., Szyf M., Joober R., Israel M., & Steiger H. (2015). DNA methylation in individuals with anorexia nervosa and in matched normal-eater controls: A genome-wide study. International Journal of Eating Disorders. Advance online publication. 48, 874882.
Booij L., Szyf M., Carballedo A., Frey E. M., Morris D., Dymov S., . . . Frodl T. (2015). DNA methylation of the serotonin transporter gene in peripheral cells and stress-related changes in hippocampal volume: A study in depressed patients and healthy controls. PLoS One, 10, e0119061.
Booij L., Tremblay R. E., Szyf M., & Benkelfat C. (2015). Genetic and early environmental influences on the serotonin system: Consequences for brain development and risk for psychopathology. Journal of Psychiatry and Neuroscience, 40, 518.
Booij L., Wang D., Levesque M. L., Tremblay R. E., & Szyf M. (2013). Looking beyond the DNA sequence: The relevance of DNA methylation processes for the stress-diathesis model of depression. Philosophical Transactions of the Royal Society of London, 368, 20120251.
Borghol N., Suderman M., McArdle W., Racine A., Hallett M., Pembrey M., . . . Szyf M. (2012). Associations with early-life socio-economic position in adult DNA methylation. International Journal of Epidemiology, 41, 6274.
Byrne E. M., Carrillo-Roa T., Henders A. K., Bowdler L., McRae A. F., Heath A. C., . . . Wray N. R. (2013). Monozygotic twins affected with major depressive disorder have greater variance in methylation than their unaffected co-twin. Translational Psychiatry, 3, e269.
Casey K. F., Levesque M. L., Szyf M., Ismaylova E., Verner M. P., Ly V., . . . Booij L. (2015). Birth weight discordance, DNA methylation and cortical morphology of adolescent monozygotic twins. Manuscript submitted for publication.
Castellani C. A., Laufer B. I., Melka M. G., Diehl E. J., O’Reilly R. L., & Singh S. M. (2015). DNA methylation differences in monozygotic twin pairs discordant for schizophrenia identifies psychosis related genes and networks. BMC Medical Genomics, 8, 17.
Cedar H., Stein R., Gruenbaum Y., Naveh-Many T., Sciaky-Gallili N., & Razin A. (1983). Effect of DNA methylation on gene expression. Cold Spring Harbor Symposia on Quantitative Biology, 47, 605609.
Chen L., Pan H., Tuan T. A., Teh A. L., MacIsaac J. L., Mah S. M., . . . Gusto Study, Group. (2015). Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism influences the association of the methylome with maternal anxiety and neonatal brain volumes. Development and Psychopathology, 27, 137150.
Comb M., & Goodman H. M. (1990). CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Research, 18, 39753982.
Coppieters N., Dieriks B. V., Lill C., Faull R. L., Curtis M. A., & Dragunow M. (2014). Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain. Neurobiology of Aging, 35, 13341344.
Cordova-Palomera A., Fatjo-Vilas M., Gasto C., Navarro V., Krebs M. O., & Fananas L. (2015). Genome-wide methylation study on depression: Differential methylation and variable methylation in monozygotic twins. Translational Psychiatry, 5, e557.
Dannlowski U., Kugel H., Redlich R., Halik A., Schneider I., Opel N., . . . Hohoff C. (2014). Serotonin transporter gene methylation is associated with hippocampal gray matter volume. Human Brain Mapping, 35, 53565367.
Dempster E. L., Pidsley R., Schalkwyk L. C., Owens S., Georgiades A., Kane F., . . . Mill J. (2011). Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Human Molecular Genetics, 20, 47864796.
Dempster E. L., Wong C. C., Lester K. J., Burrage J., Gregory A. M., Mill J., & Eley T. C. (2014). Genome-wide methylomic analysis of monozygotic twins discordant for adolescent depression. Biological Psychiatry, 76, 977983.
Essex M. J., Thomas Boyce W., Hertzman C., Lam L. L., Armstrong J. M., Neumann S. M., & Kobor M. S. (2011). Epigenetic vestiges of early developmental adversity: Childhood stress exposure and DNA methylation in adolescence. Child Development, 84, 5875.
Frieling H., Romer K. D., Scholz S., Mittelbach F., Wilhelm J., De Zwaan M., . . . Bleich S. (2010). Epigenetic dysregulation of dopaminergic genes in eating disorders. International Journal of Eating Disorders, 43, 577583.
Frodl T., Szyf M., Carballedo A., Ly V., Dymov S., Vaisheva F., . . . Booij L. (2015). DNA methylation of the serotonin transporter gene (SLC6A4) is associated with brain function involved in processing emotional stimuli. Journal of Psychiatry & Neuroscience, 40, 296305.
Gale C. R., & Martyn C. N. (2004). Birth weight and later risk of depression in a national birth cohort. British Journal of Psychiatry, 184, 2833.
Gluckman P. D., Hanson M. A., Cooper C., & Thornburg K. L. (2008). Effect of in utero and early-life conditions on adult health and disease. New England Journal of Medicine, 359, 6173.
Gordon L., Joo J. H., Andronikos R., Ollikainen M., Wallace E. M., Umstad M. P., . . . Craig J. M. (2011). Expression discordance of monozygotic twins at birth: Effect of intrauterine environment and a possible mechanism for fetal programming. Epigenetics, 6, 579592.
Gordon L., Joo J. E., Powell J. E., Ollikainen M., Novakovic B., Li X., . . . Saffery R. (2012). Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Research, 22, 13951406.
Grayson D. R., & Guidotti A. (2013). The dynamics of DNA methylation in schizophrenia and related psychiatric disorders. Neuropsychopharmacology, 38, 138166.
Gruenbaum Y., Stein R., Cedar H., & Razin A. (1981). Methylation of CpG sequences in eukaryotic DNA. FEBS Letters, 124, 6771.
Gruenbaum Y., Szyf M., Cedar H., & Razin A. (1983). Methylation of replicating and post-replicated mouse L-cell DNA. Proceedings of the National Academy of Sciences of the United States of America, 80, 49194921.
Heijmans B. T., Tobi E. W., Stein A. D., Putter H., Blauw G. J., Susser E. S., . . . Lumey L. H. (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proceedings of the National Academy of Sciences of the United States of America, 105, 1704617049.
Heim C., & Binder E. B. (2012). Current research trends in early life stress and depression: Review of human studies on sensitive periods, gene-environment interactions, and epigenetics. Experimental Neurology, 233, 102111.
Kaminsky Z. A., Tang T., Wang S. C., Ptak C., Oh G. H., Wong A. H., . . . Petronis A. (2009). DNA methylation profiles in monozygotic and dizygotic twins. Nature Genetics, 41, 240245.
Kato T., Iwamoto K., Kakiuchi C., Kuratomi G., & Okazaki Y. (2005). Genetic or epigenetic difference causing discordance between monozygotic twins as a clue to molecular basis of mental disorders. Molecular Psychiatry, 10, 622630.
Kramer M. S. (1987). Determinants of low birth weight: Methodological assessment and meta-analysis. Bulletin of the World Health Organization, 65, 663737.
Kuratomi G., Iwamoto K., Bundo M., Kusumi I., Kato N., Iwata N., . . . Kato T. (2008). Aberrant DNA methylation associated with bipolar disorder identified from discordant monozygotic twins. Molecular Psychiatry, 13, 429441.
Levesque M. L., Casey K. F., Szyf M., Ismaylova E., Ly V., Verner M. P., . . . Booij L. (2014). Genome-wide DNA methylation variability in adolescent monozygotic twins followed since birth. Epigenetics, 9, 14101421.
Levesque M. L., Fahim C., Ismaylova E., Verner M. P., Casey K. F., Vitaro F., . . . Booij L. (2015). The impact of the in utero and early postnatal environments on grey and white matter volume: A study with adolescent monozygotic twins. Developmental Neuroscience. Advance online publication.
Lister R., Mukamel E. A., Nery J. R., Urich M., Puddifoot C. A., Johnson N. D., . . . Ecker J. R. (2013). Global epigenomic reconfiguration during mammalian brain development. Science, 341, 1237905.
Lister R., Pelizzola M., Dowen R. H., Hawkins R. D., Hon G., Tonti-Filippini J., . . . Ecker J. R. (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462, 315322.
Liu Y., Li X., Aryee M. J., Ekstrom T. J., Padyukov L., Klareskog L., . . . Feinberg A. P. (2014). GeMes, clusters of DNA methylation under genetic control, can inform genetic and epigenetic analysis of disease. American Journal of Human Genetics, 94, 485495.
Loke Y. J., Hannan A. J., & Craig J. M. (2015). The role of epigenetic change in Autism spectrum disorders. Frontiers in Neurology, 6, 107.
Marsit C. J., Lambertini L., Maccani M. A., Koestler D. C., Houseman E. A., Padbury J. F., . . . Chen J. (2012). Placenta-imprinted gene expression association of infant neurobehavior. Journal of Pediatrics, 160, 854860.
Mastroeni D., McKee A., Grover A., Rogers J., & Coleman P. D. (2009). Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer's disease. PLoS One, 4, e6617.
McGowan P. O., Sasaki A., D’Alessio A. C., Dymov S., Labonte B., Szyf M., . . . Meaney M. J. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342348.
McRae A. F., Powell J. E., Henders A. K., Bowdler L., Hemani G., Shah S., . . . Montgomery G. W. (2014). Contribution of genetic variation to transgenerational inheritance of DNA methylation. Genome Biology, 15, R73.
Mill J., & Petronis A. (2008). Pre- and peri-natal environmental risks for attention-deficit hyperactivity disorder (ADHD): The potential role of epigenetic processes in mediating susceptibility. Journal of Child Psychology and Psychiatry, 49, 10201030.
Nan X., Campoy F. J., & Bird A. (1997). MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell, 88, 471481.
Newcombe R., Milne B. J., Caspi A., Poulton R., & Moffitt T. E. (2007). Birthweight predicts IQ: Fact or artefact? Twin Research and Human Genetics, 10, 581586.
Nguyen A., Rauch T. A., Pfeifer G. P., & Hu V. W. (2010). Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB Journal, 24, 30363051.
Nishioka M., Bundo M., Kasai K., & Iwamoto K. (2012). DNA methylation in schizophrenia: Progress and challenges of epigenetic studies. Genome Medicine, 4, 96.
Ollikainen M., Smith K. R., Joo E. J., Ng H. K., Andronikos R., Novakovic B., . . . Craig J. M. (2010). DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Human Molecular Genetics, 19, 41764188.
Provencal N., Suderman M. J., Guillemin C., Massart R., Ruggiero A., Wang D., . . . Szyf M. (2012). The signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells. Journal of Neuroscience, 32, 1562615642.
Quon G., Lippert C., Heckerman D., & Listgarten J. (2013). Patterns of methylation heritability in a genome-wide analysis of four brain regions. Nucleic Acids Research, 41, 20952104.
Ramchandani S., Bhattacharya S. K., Cervoni N., & Szyf M. (1999). DNA methylation is a reversible biological signal. Proceedings of the National Academy of Sciences of the United States of America, 96, 61076112.
Razin A. and Cedar H.(1993). DNA methylation and embryogenesis. Experimentia Supplementum, 64, 343357.
Razin A., & Riggs A. D. (1980). DNA methylation and gene function. Science, 210, 604610.
Razin A., & Szyf M. (1984). DNA methylation patterns. Formation and function. Biochimica et Biophysica Acta, 782, 331342.
Raznahan A., Greenstein D., Lee N. R., Clasen L. S., & Giedd J. N. (2012). Prenatal growth in humans and postnatal brain maturation into late adolescence. Proceedings of the National Academy of Sciences of the United States of America, 109, 1136611371.
Relton C. L., & Davey Smith G. (2012). Two-step epigenetic Mendelian randomization: A strategy for establishing the causal role of epigenetic processes in pathways to disease. International Journal of Epidemiology, 41, 161176.
Shonkoff J. P., Boyce W. T., & McEwen B. S. (2009). Neuroscience, molecular biology, and the childhood roots of health disparities: Building a new framework for health promotion and disease prevention. JAMA, 301, 22522259.
Simpkin A. J., Suderman M., Gaunt T. R., Lyttleton O., McArdle W. L., Ring S. M., . . . Relton C. L. (2015). Longitudinal analysis of DNA methylation associated with birth weight and gestational age. Human Molecular Genetics, 24, 37523763.
Sinclair K. D., & Singh R. (2007). Modelling the developmental origins of health and disease in the early embryo. Theriogenology, 67, 4353.
Smith A. K., Kilaru V., Klengel T., Mercer K. B., Bradley B., Conneely K. N., . . . Binder E. B. (2015). DNA extracted from saliva for methylation studies of psychiatric traits: Evidence tissue specificity and relatedness to brain. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 168B, 3644.
Souren N. Y., Lutsik P., Gasparoni G., Tierling S., Gries J., Riemenschneider M., . . . Walter J. (2013). Adult monozygotic twins discordant for intra-uterine growth have indistinguishable genome-wide DNA methylation profiles. Genome Biology, 14, R44.
Stein R., Razin A., & Cedar H. (1982). In vitro methylation of the hamster adenine phosphoribosyltransferase gene inhibits its expression in mouse L cells. Proceedings of the National Academy of Sciences of the United States of America, 79, 34183422.
Suderman M., Borghol N., Pappas J. J., Pinto Pereira S. M., Pembrey M., Hertzman C., . . . Szyf M. (2014). Childhood abuse is associated with methylation of multiple loci in adult DNA. BMC Medical Genomics, 7, 13.
Szyf M. (2009). The early life environment and the epigenome. Biochimica et Biophysica Acta, 1790, 878885.
Szyf M. (2011). The early life social environment and DNA methylation: DNA methylation mediating the long-term impact of social environments early in life. Epigenetics, 6, 971978.
Szyf M. (2013). DNA methylation, behavior and early life adversity. Journal of Genetics and Genomics, 40, 331338.
Tan Q., Frost M., Heijmans B. T., von Bornemann Hjelmborg J., Tobi E. W., Christensen K., & Christiansen L. (2014). Epigenetic signature of birth weight discordance in adult twins. BMC Genomics, 15, 1062.
Teh A. L., Pan H., Chen L., Ong M. L., Dogra S., Wong J., . . . Holbrook J. D. (2014). The effect of genotype and in utero environment on interindividual variation in neonate DNA methylomes. Genome Research, 24, 10641074.
Tremblay R. E., Booij L., Provençal N., & Szyf M. (in press). The impact of environmental stressors on DNA methylation, neurobehavioral development and chronic physical aggression: Prospects for early protective interventions, Chapter III.4. In Hughes C. (Ed.), Translational Toxicology. UK, London: Springer.
Tremblay R. E., & Szyf M. (2010). Developmental origins of chronic physical aggression and epigenetics. Epigenomics, 2, 495499.
Van Os J., Wichers M., Danckaerts M., Van Gestel S., Derom C., & Vlietinck R. (2001). A prospective twin study of birth weight discordance and child problem behavior. Biological Psychiatry, 50, 593599.
Wang D., Szyf M., Benkelfat C., Provencal N., Turecki G., Caramaschi D., . . . Booij L. (2012). Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression. PLoS One, 7, e39501.
Weaver I. C., Cervoni N., Champagne F. A., D’Alessio A. C., Sharma S., Seckl J. R., . . . Meaney M. J. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847854.
Wong C. C., Caspi A., Williams B., Craig I. W., Houts R., Ambler A., . . . Mill J. (2010). A longitudinal study of epigenetic variation in twins. Epigenetics, 5, 516526.
Wu J. C., & Santi D. V. (1985). On the mechanism and inhibition of DNA cytosine methyltransferases. Progress in Clinical Biological Research, 198, 119129.
Yousefi M., Karmaus W., Zhang H., Ewart S., Arshad H., & Holloway J. W. (2013). The methylation of the LEPR/LEPROT genotype at the promoter and body regions influence concentrations of leptin in girls and BMI at age 18 years if their mother smoked during pregnancy. International Journal of Molecular Epidemiology, 4, 86100.
Zhang N., Zhao S., Zhang S. H., Chen J., Lu D., Shen M., & Li C. (2015). Intra-monozygotic twin pair discordance and longitudinal variation of whole-genome scale DNA methylation in adults. PLoS One, 10, e0135022.
Zhao J., Goldberg J., Bremner J. D., & Vaccarino V. (2013). Association between promoter methylation of serotonin transporter gene and depressive symptoms: A monozygotic twin study. Psychosomatic Medicine, 75, 523529.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Twin Research and Human Genetics
  • ISSN: 1832-4274
  • EISSN: 1839-2628
  • URL: /core/journals/twin-research-and-human-genetics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 43
Total number of PDF views: 272 *
Loading metrics...

Abstract views

Total abstract views: 685 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.