Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-03T15:55:08.668Z Has data issue: false hasContentIssue false

An unusual voltage-gated anion channel found in the cone cells of the chicken retina

Published online by Cambridge University Press:  02 June 2009

Martin Wilson
Affiliation:
Department of Zoology, University of California, Davis
Evanna Gleason
Affiliation:
Department of Zoology, University of California, Davis

Abstract

Using the whole-cell patch clamp technique, we have examined the voltage-gated currents present in adult chicken cone cells. When calcium and calcium-gated currents are blocked, hyperpolarizing voltage steps elicit slowly increasing inward currents as has been shown for photoreceptors in other species. Unlike the case for other species, chicken cones appear to lack the inward-rectifying cationic current Ih that contributes to the shaping of the photovoltage. Instead of Ih, these cones possess an anionic inward-rectifying current that in kinetics, activation range and probably function is remarkably similar to Ih. This anion channel is unusual in that both nitrate and acetate are more permeant than chloride ions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angstadt, J.D. & Calabrese, R.L. (1989). A hyperpolarization-activated inward current in heart interneurons of the medicinal leech. Journal of Neuroscience 9, 28462857.CrossRefGoogle ScholarPubMed
Attwell, D. & Wilson, M. (1980). Behavior of the rod network in tiger salamander retina mediated by properties of individual rods. Journal of Physiology 309, 287315.CrossRefGoogle ScholarPubMed
Attwell, D., Mobbs, P., Tessier-Lavigne, M. & Wilson, M. (1987). Neurotransmitter-induced currents in retinal bipolar cells of the axoltl Ambystoma mexicanum. Journal of Physiology 387, 125161.CrossRefGoogle Scholar
Bader, C.R., Bertrand, D. & Schwartz, E.A. (1982). Voltage-activated and calcium-activated currents studied in solitary rod inner segments from the salamander retina. Journal of Physiology 331, 253284.CrossRefGoogle ScholarPubMed
Bader, C.R., MacLeish, P.R. & Schwartz, E.A. (1979). Responses to light of solitary rod photoreceptors isolated from tiger salamander retina. Proceedings of the National Academy of Sciences of the U.S.A. 75, 35073511.CrossRefGoogle Scholar
Barnes, S. & Hille, B. (1989). Ionic channels of the inner segment of tiger salamander cone photoreceptors. Journal of General Physiology 94, 719743.CrossRefGoogle ScholarPubMed
Baylor, D.A., Hodgkin, A.L. & Lamb, T.D. (1974). The electrical response of turtle cones to flashes and steps of light. Journal of Physiology 242, 685727.CrossRefGoogle ScholarPubMed
Baylor, D.A., Matthews, G. & Nunn, B.J. (1984). Location and function of voltage-sensitive conductances in retinal rods of the salamander (Ambystoma tigrinum). Journal of Physiology 354, 203223.CrossRefGoogle ScholarPubMed
Beech, D.J. & Barnes, S. (1989). Characterization of a voltage-gated K+ channel that accelerates the rod response to dim light. Neuron 3, 573581.CrossRefGoogle ScholarPubMed
Block, M.L. & Moody, W.J. (1990). A voltage-dependent chloride current linked to the cell cycle in ascidian embryos. Science 247, 10901092.CrossRefGoogle Scholar
Bobker, D.H. & Williams, J.T. (1989). Serotonin augments the cationic current I h in central neurons. Neuron 2, 15351540.CrossRefGoogle ScholarPubMed
Bormann, J., Hamill, O.P. & Sakmann, B. (1987). Mechanism of anion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal neurones. Journal of Physiology 385, 243286.CrossRefGoogle ScholarPubMed
Brown, H.F., DiFrancesco, D. & Noble, S.J. (1979). How does adrenaline accelerate the heart? Nature (London) 280, 235236.CrossRefGoogle ScholarPubMed
Chesnoy-Marchais, D. (1982). A C1- conductance activated by hyperpolarization in Aplysia neurones. Nature (London) 299, 359361.CrossRefGoogle Scholar
Chesnoy-Marchais, D. (1983). Characterization of a chloride conductance activated by hyperpolarization in Aplysia neurones. Journal of Physiology 342, 277308.CrossRefGoogle ScholarPubMed
DiFrancesco, D. (1984). Characterization of the pace-maker current kinetics in calf purkinje fibres. Journal of Physiology 348, 341367.CrossRefGoogle ScholarPubMed
Evans, M.G. & Marty, A. (1986). Calcium-dependent chloride currents in isolated cells from rat lacrimal glands. Journal of Physiology 378, 437460.CrossRefGoogle ScholarPubMed
Franciolini, F. & Nonner, W. (1987). Anion and cation permeability of a chloride channel in rat hippocampal neurons. Journal of General Physiology 90, 453478.CrossRefGoogle ScholarPubMed
Gray, P.T.A., Bevan, S. & Ritchie, J.M. (1984). High conductance anion-selective channels in rat cultured Schwann cells. Proceedings of the Royal Society Series B 221, 395409.Google ScholarPubMed
Hestrin, S. (1987). The properties and function of inward rectification in rod photoreceptors of the tiger salamander. Journal of Physiology 390, 319333.CrossRefGoogle ScholarPubMed
Madison, D.V., Malenka, R.C. & Nicoll, R.A. (1986). Phorbol esters block a voltage-sensitive chloride current in hippocampal pyramidal cells. Nature 321, 695697.CrossRefGoogle Scholar
Maricq, A.V. & Korenbrot, J.I. (1988). Calcium and calcium-dependent chloride currents generate action potentials in solitary cone photoreceptors. Neuron 1, 503515.CrossRefGoogle ScholarPubMed
Mayer, M.L. & Westbrook, G.L. (1983). A voltage-clamp analysis of inward (anomalous) rectification in mouse spinal sensory ganglion neurons. Journal of Physiology 340, 1945.CrossRefGoogle Scholar
Seyama, I. (1979). Characteristics of the anion channel in the sino-atrial node cell of the rabbit. Journal of Physiology 294, 447460.CrossRefGoogle ScholarPubMed
Somlyo, A.P. & Walz, B. (1985). Elemental distribution in Rana pipiens retinal rods: quantitative electron-probe analysis. Journal of Physiology 358, 183195.CrossRefGoogle ScholarPubMed
Wright, E.M. & Diamond, J.M. (1977). Anion selectivity in biological systems. Physiological Reviews 57, 109156.CrossRefGoogle ScholarPubMed