Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-29T21:16:05.166Z Has data issue: false hasContentIssue false

Human Horizontal Optokinetic Nystagmus Elicited by the Upper Versus the Lower Visual Fields

Published online by Cambridge University Press:  02 June 2009

C. M. Murasugi
Affiliation:
Department of Psychology, York University, Canada
I. P. Howard
Affiliation:
Department of Psychology, York University, Canada Institute for Space and Terrestial Science, Human Performance Laboratory, York University, Canada

Abstract

A 30-deg-high horizontally rotating random-dot display was presented to the central field, and with its more central edge at vertical eccentricities of 0, 2.5, 5, and 10 deg above or below the horizon. Stimulus velocities of 25–100 deg/s and two directions of motion were presented. The mean gain of the slow phases of optokinetic nystagmus (OKN) for five subjects was significantly higher when the stimulus was presented to the lower visual field than when the stimulus was presented to the upper field. This difference was most pronounced when the display was displaced 5 deg from the fovea and moving below 100 deg/s. Our results are consistent with existing psychophysical and physiological evidence for the superiority of the upper retina. In addition, four of the five observors showed significant directional asymmetries.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi-Usami, E. & Lehmann, D. (1983). Monocular and binocular evoked average potential field topography: upper and lower hemiretinal stimuli. Experimental Brain Research 50, 341346.Google ScholarPubMed
Albright, T.D. (1984). Direction and orientation selectivity of neurons in visual area MT of the macaque. Journal of Neurophysiology 52, 11061130.CrossRefGoogle ScholarPubMed
Ballas, I., Hoffmann, K.P. & Wagner, H.J. (1981). Retinal projection to the nucleus of the optic tract in the cat as revealed by retrograde transport of horseradish peroxidase. Neuroscience Letters 26, 197202.CrossRefGoogle Scholar
Baloh, R.W., Honrubia, V., Yee, R.D. & Jacobson, K. (1986). Vertical visual-vestibular interaction in normal human subjects. Experimental Brain Research 64, 400406.CrossRefGoogle ScholarPubMed
Benson, A.J. & Geudry, F.E. (1971). Comparison of tracking-task performance and nystagmus during sinusoidal oscillation in yaw and pitch. Aerospace Medicine 42, 593601.Google ScholarPubMed
Brodal, P. (1978). The cortico-pontine projection in the rhesus monkey. Origin and principles of organization. Brain 101, 251283.CrossRefGoogle Scholar
Cohen, B., Matuo, V. & Raphan, T. (1977). Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic afternystagmus. Journal of Physiology 270, 321344.CrossRefGoogle Scholar
Cohen, B., Henn, V., Raphan, T. & Dennett, D. (1981). Velocity storage, nystagmus, and visual-vestibular interactions in humans. Annals of the N. Y. Academy of Science 374, 421433.CrossRefGoogle ScholarPubMed
Collewijn, H. (1969). Optokinetic eye movements in the rabbit: input-output relations. Vision Research 9, 117132.CrossRefGoogle ScholarPubMed
Collewijn, H. (1975). Direction-selective units in the rabbit's nucleus of the optic tract. Brain Research 100, 489508.CrossRefGoogle ScholarPubMed
Collewijn, H. & Tamminga, E.P. (1986). Human fixation and pursuit in normal and open-loop conditions: effects of central and peripheral retinal targets. Journal of Physiology 379, 109129.CrossRefGoogle ScholarPubMed
Dubois, M.F.W. & Collewijn, H. (1979 a). The optokinetic reactions of the rabbit: relation to the visual streak. Vision Research 19, 917.CrossRefGoogle Scholar
Dubois, M.F.W. & Collewijn, H. (1979 b). Optokinetic reactions in man elicited by localized retinal motion stimuli. Vision Research 19, 11051115.CrossRefGoogle ScholarPubMed
Eason, R.G., White, C.T. & Oden, D. (1967). Averaged occipital responses to stimulation of sites in the upper and lower halves of the retina. Perception and Psychophysics 2, 423425.CrossRefGoogle Scholar
Farmer, S.G. & Rodieck, R.W. (1982). Ganglion cells of the cat accessory optic system: morphology and retinal topography. Journal of Comparative Neurology 205, 190198.CrossRefGoogle ScholarPubMed
Fries, W. (1981). The projection from striate and prestriate visual cortex onto the pontine nuclei in the macaque monkey. Society of Neuroscience Abstracts 7, 762.Google Scholar
Glickstein, M., Cohen, J.L., Dixon, B., Gibson, A., Hollins, M., Lobossiere, E. & Robinson, F. (1980). Corticopontine visual projections in macaque monkeys. Journal of Comparative Neurology 190, 209229.CrossRefGoogle ScholarPubMed
Grasse, K.L. & Cynader, M.S. (1984). Electrophysiology of lateral and dorsal terminal nuclei of the accessory optic system. Journal of Neurophysiology 51, 276292.CrossRefGoogle ScholarPubMed
Grasse, K.L. & Cynader, M.S. (1986). Response properties of single units in the accessory optic system of the dark-reared cat. Developmental Brain Research 27, 199210.CrossRefGoogle Scholar
Grasse, K.L. & Cynader, M.S. (1987). The accessory optic system of the monocularly deprived cat. Developmental Brain Research 31, 229241.CrossRefGoogle Scholar
Grasse, K.L., Cynader, M.S. & Douglas, R.M. (1984). Alterations in response properties in the lateral and dorsal terminal nuclei of the cat accessory optic system following visual cortex lesions. Experimental Brain Research 55, 6980.CrossRefGoogle ScholarPubMed
Hoffmann, K.P. (1982). Cortical versus subcortical contributions to the optokinetic reflex in the cat. In Functional Basis of Ocular Motility Disorders, ed. Lennerstrand, G., Zee, D.S. & Keller, E.L., pp. 303311. New York: Pergamon Press.Google Scholar
Hoffmann, K.P. & Schoppmann, A. (1981). A quantitative analysis of the direction-specific response of neurons in the cat's nucleus of the optic tract. Experimental Brain Research 42, 146157.CrossRefGoogle ScholarPubMed
Howard, I.P. & Ohmi, M. (1984). The efficiency of the central and peripheral retina in driving human optokinetic nystagmus. Vision Research 24, 969976.CrossRefGoogle ScholarPubMed
Kawano, K. & Sasaki, M. (1984). Response properties of neurons in posterior parietal cortex of monkey during visual-vestibular stimulation. II. Optokinetic neurons. Journal of Neurophysiology 51, 352360.CrossRefGoogle ScholarPubMed
Kimura, H. & Tsutsui, J. (1981). Average responses evoked by moving grating pattern in the upper, central, and lower visual field. Neuroscience Letters 24, 295299.CrossRefGoogle ScholarPubMed
Lehmann, D. & Skrandies, W. (1979). Multichannel evoked potential fields show different properties of human upper and lower hemiretina systems. Experimental Brain Research 35, 151159.CrossRefGoogle ScholarPubMed
Lisberger, S.G., Miles, F.A., Optican, L.M. & Eighmy, B.B. (1981). Optokinetic response in monkey: underlying mechanisms and their sensitivity to long-term adaptive changes in vestibuloocular reflex. Journal of Neurophysiology 45, 869890.CrossRefGoogle ScholarPubMed
Maunsell, J.H.R. & Van Essen, D.C. (1983). Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. Journal of Neurophysiology 49, 11271147.CrossRefGoogle ScholarPubMed
Meyer, C.H., Lasker, A.G. & Robinson, D.A. (1985). The upper limit of human smooth pursuit velocity. Vision Research 25, 561563.CrossRefGoogle ScholarPubMed
Millodot, M. & Lamont, A. (1974). Peripheral visual acuity in the vertical plane. Vision Research 14, 14971498.CrossRefGoogle Scholar
Montarolo, P.G., Precht, W. & Strata, P. (1981). Functional organization of the mechanisms subserving the optokinetic nystagmus in the cat. Neuroscience 6, 231246.CrossRefGoogle ScholarPubMed
Mountcastle, V.B., Lynch, J.C., Georgopoulos, A., Sakata, H. & Acuna, C. (1975). Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. Journal of Neurophysiology 38, 871908.CrossRefGoogle ScholarPubMed
Murasugi, C.M. & Howard, I.P. (1987). Asymmetries in human optokinetic nystagmus. In Fourth European Conference on Eye Movements. Vol. 1: Proceedings, ed. Lüer, G. & Lass, U., pp. 101102. Göttingen: Hogrefe.Google Scholar
Murasugi, C.M., Howard, I.P. & Ohmi, M. (1986). Optokinetic nystagmus: the effects of stationary edges, alone, and in combination with central occlusion. Vision Research 26, 11551162.CrossRefGoogle ScholarPubMed
Muratore, R. & Zee, D.S. (1979). Pursuit afternystagmus. Vision Research 19, 10571059.CrossRefGoogle ScholarPubMed
Newsome, W.T., Wurtz, R.H., Dürsteler, M.R. & Mikami, A. (1985). Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. Journal of Neuroscience 5, 825840.CrossRefGoogle ScholarPubMed
Ohmi, M., Howard, I.P. & Eveleigh, B. (1986). Directional preponderance in human optokinetic nystagmus. Experimental Brain Research 63, 387394.CrossRefGoogle ScholarPubMed
Oyster, C.W. (1968). The analysis of image motion by rabbit retina. Journal of Physiology 199, 613635.CrossRefGoogle ScholarPubMed
Oyster, C.W., Simpson, J.I., Takahashi, E.S. & Soodak, R.E. (1980). Retinal ganglion cells projecting to the rabbit accessory optic system. Journal of Comparative Neurology 190, 4961.CrossRefGoogle Scholar
Oyster, C.W., Takahashi, E. & Collewijn, H. (1972). Direction-selective retinal ganglion cells and control of optokinetic nystagmus in the rabbit. Vision Research 12, 183193.CrossRefGoogle ScholarPubMed
Payne, W.H. (1967). Visual reaction times on a circle about the fovea. Science 155, 481482.CrossRefGoogle ScholarPubMed
Pola, J. & Wyatt, H.J. (1985). Active and passive smooth eye movements: effects of stimulus size and location. Vision Research 25, 10631076.CrossRefGoogle ScholarPubMed
Precht, W. (1982). Anatomical and functional organization of optokinetic pathways. In Functional Basis of Ocular Motility Disorders, ed. Lennerstrand, G., Zee, D.S. & Keller, E.L., pp. 291302. New York: Pergamon Press.Google Scholar
Raphan, T., Matsuo, V. & Cohen, B. (1979). Velocity storage in the vestibulo-ocular reflex arc (VOR). Experimental Brain Research 35, 229248.CrossRefGoogle ScholarPubMed
Schor, C. & Narayan, V. (1981). The influence of field size upon the Spatial-frequency response of optokinetic nystagmus. Vision Research 21, 985994.CrossRefGoogle ScholarPubMed
Skrandies, W. & Baier, M. (1986). The standing potential of the human eye reflects differences between upper and lower retinal areas. Vision Research 26, 577581.CrossRefGoogle ScholarPubMed
Smith, A.T. & Hammond, P. (1986). Hemifield differences in perceived velocity. Perception 15, 111117.CrossRefGoogle ScholarPubMed
Steinbach, M.J. & Pearce, D.G. (1972). Release of pursuit eye movements using afterimages. Vision Research 12, 13071311.CrossRefGoogle ScholarPubMed
Ter Braak, J.W.G. (1936). Untersuchungen über optokinetischen Nystagmus. Archives Néerlandaises de Physiologie de l'homme et des animaux 21, 309376.Google Scholar
Tusa, R.J. & Palmer, L.A. (1980). Retinotopic organization of areas 20 and 21 in the cat. Journal of Comparative Neurology 193, 147164.CrossRefGoogle ScholarPubMed
Tychsen, L. & Lisberger, S.G. (1986). Visual motion processing for the initiation of smooth-pursuit eye movements in humans. Journal of Neurophysiology 56, 953968.CrossRefGoogle ScholarPubMed
Tyler, C.W. (1987). Analysis of visual modulation sensitivity. III. Meridional variations in peripheral flicker sensitivity. Journal of the Optical Society of America A 4, 16121619.CrossRefGoogle ScholarPubMed
Van Buren, J.M. (1963). The Retinal Ganglion Cell Layer. Springfield, Illinois: Thomas.Google Scholar
Van Den Berg, A.V. & Collewijn, H. (1986). Human smooth pursuit: effects of stimulus extent and of spatial and temporal constraints of the pursuit trajectory. Vision Research 26, 12091222.CrossRefGoogle ScholarPubMed
Van Die, G.C. & Collewijn, H. (1982). Optokinetic nystagmus in man. Human Neurobiology 1, 111119.Google ScholarPubMed
Van Die, G.C. & Collewijn, H. (1986). Control of human optokinetic nystagmus by the central and peripheral retina: effects of partial visual field masking, scotopic vision, and central retina scotomata. Brain Research 383, 185194.CrossRefGoogle ScholarPubMed
Van Essen, D.C., Maunsell, J.H.R. & Bixby, J.L. (1981). The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties, and topographic organization. Journal of Comparative Neurology 199, 293326.CrossRefGoogle ScholarPubMed
Weller, R.E. & Kaas, J.H. (1983). Retinotopic patterns of connections of area 17 with visual areas V-11 and MT in macaque monkeys. J. Comparative Neurology 220, 253279.CrossRefGoogle Scholar
Westall, C.A. & Schor, C.M. (1985). Asymmetries of optokinetic nystagmus in amblyopia: the effect of selected retinal stimulation. Vision Research 25, 14311438.CrossRefGoogle ScholarPubMed
Winterson, B.J. & Steinman, R.M. (1978). The effect of luminance on human smooth pursuit of perifoveal and foveal targets. Vision Research 18, 11651172.CrossRefGoogle ScholarPubMed
Yasui, S. & Young, L.R. (1984). On the predictive control of foveal eye tracking and slow phases of optokinetic and vestibular nystagmus. Journal of Physiology 347, 1733.CrossRefGoogle ScholarPubMed
Zee, D.S., Yamazaki, A., Butler, P.H. & Güncer, G. (1981). Effects of ablation of flocculus and paraflocculus on eye movements in primate. Journal of Neurophysiology 46, 878899.CrossRefGoogle ScholarPubMed