Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T02:36:07.532Z Has data issue: false hasContentIssue false

Morphological diversity in terminals of W-type retinal ganglion cells at projection sites in cat brain

Published online by Cambridge University Press:  02 June 2009

Boqing Chen
Affiliation:
Wayne State University, Detroit
Xiao-Jiang Hu
Affiliation:
Wayne State University, Detroit
Roberta G. Pourcho
Affiliation:
Wayne State University, Detroit

Abstract

The morphological features of retinal terminals in cat brain were examined at sites where projections of W-type ganglion cells predominate. These included the parvicellular C laminae of the dorsal lateral geniculate nucleus, the ventral lateral geniculate nucleus, stratum griseum superficiale of the superior colliculus, and the suprachiasmatic nucleus. Positive identification of retinal terminals was achieved following anterograde transport of intravitreally injected native or wheat germ agglutinin-conjugated horseradish peroxidase. In contrast to the classic features of retinal terminals as defined from sites where X- and Y-type ganglion cells predominate, i.e. round synaptic vesicles, large profiles, and pale mitochondria, substantial numbers of terminals in W-cell rich areas were found to contain dark mitochondria. Synaptic vesicles, although consistently round, were typically smaller in terminals with dark mitochondria than in those with pale mitochondria. These findings indicate a diversity among terminals of W-cells and suggest that such terminals cannot be distinguished on the basis of limited morphological criteria.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Behan, M. (1981). Identification and distribution of retinocollicular projection in the cat: An electron microscopic autoradiographic analysis. Journal of Comparative Neurology 206, 253258.CrossRefGoogle Scholar
Behan, M. (1984). An EM-autoradiographic analysis of the projection from cortical areas 17, 18 and 19 to the superior colliculus in the cat. Journal of Comparative Neurology 225, 591604.CrossRefGoogle Scholar
Berson, D.M. (1988). Convergence of retinal W-cell and corticotectal input to cells of the cat superior colliculus. Journal of Neurophysiology 60, 18611873.CrossRefGoogle ScholarPubMed
Bowling, D.B. & Michael, C.R. (1980). Projection patterns of single physiologically characterized optic tract fibers in the cat's lateral geniculate body. Nature 286, 899902.CrossRefGoogle Scholar
Broadwell, R.D. & Balin, B. (1985). Endocytotic and exocytotic pathways of the neuronal secretory process and transsynaptic transfer of wheat germ agglutinin-horseradish peroxidase in vivo. Journal of Comparative Neurology 242, 632650.CrossRefGoogle Scholar
Chen, B. & Pourcho, R. (1995). Morphological diversity and gluta-mate immunoreactivity of retinal terminals in the suprachiasmatic nucleus of the cat. Journal of Comparative Neurology 361, 108118.CrossRefGoogle Scholar
Cleland, B.C., Dubin, M.W. & Levick, W.R. (1971). Sustained and transient neurons in the cat's lateral geniculate nucleus. Journal of Physiology (London) 217, 473496.CrossRefGoogle Scholar
Cleland, B.C., Levick, W.R. & Wassle, H. (1975). Physiological identification of a morphological class of cat retinal ganglion cells. Journal of Physiology (London) 248, 151171.CrossRefGoogle ScholarPubMed
Enroth-Cuoell, C. & Robson, J. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology (London) 197, 517522.CrossRefGoogle Scholar
Famiglietti, E. V. Jr. & Peters, A. (1972). The synaptic glomerulus and intrinsic neurons in the dorsal lateral geniculate nucleus of the cat. Journal of Comparative Neurology 144, 285344.CrossRefGoogle ScholarPubMed
Fukuda, Y. & Stone, J. (1974). Retinal distribution and central projection of Y-, X-, and W-cells of the cat retina. Journal ofNeuro-physiology 37, 749772.Google Scholar
Fukuda, Y., Hsiao, C.F. & Watanabe, M. (1985). Morphological correlates of Y, X, and W type ganglion cells in the cat's retina. Vision Research 25, 319327.CrossRefGoogle Scholar
Gibson, A.R., Hansma, D.I., Houk, J.C. & Robinson, F.R. (1984). A sensitive low artifact TMB procedure for the demonstration of WGA-HRP in the CNS. Brain Research 298, 235241.CrossRefGoogle ScholarPubMed
Gray, E.G. (1959). Axosomatic and axodendritic synapses of the cerebral cortex. An electron microscopic study. Journal of Anatomy 93, 420433.Google Scholar
Guillery, R.W. (1969 a). The organization of synaptic interconnections in the laminae of the dorsal lateral geniculate nucleus of the cat. Zeitschrift Zellforschung 96, 138.CrossRefGoogle ScholarPubMed
Guillery, R.W. (1969 b). A quantitative study of synaptic interconnections in the dorsal lateral geniculate nucleus. Zeitschrift Zellforschung 96, 3948.CrossRefGoogle Scholar
Guillery, R.W. (1970). The laminar distribution of retinal fibers in the dorsal lateral geniculate nucleus of the cat: A new interpretation. Journal of Comparative Neurology 138, 339368.CrossRefGoogle Scholar
Guillery, R.W. & Scott, G.L. (1971). Observations on synaptic patterns in the dorsal lateral geniculate nucleus of the cat: The C laminae and the perikaryal synapses. Experimental Brain Research 12, 184203.CrossRefGoogle Scholar
Guillery, R.W. & Kaas, J.H. (1971). A study of normal and congeni-tally abnormal retinogeniculate projections in cats. Journal of Comparative Neurology 143, 73100.CrossRefGoogle ScholarPubMed
Hamos, J.E., Van Horn, S.C., Racskouski, D. & Sherman, S.M. (1987). Synaptic circuits involving an individual retinogeniculate axon in the cat. Journal of Comparative Neurology 259, 165192.CrossRefGoogle ScholarPubMed
Hoffman, K.P. & Stone, J. (1973). Central terminations of W-, X-, and Y-type ganglion cell axons from cat retina. Brain Research 49, 500501.CrossRefGoogle Scholar
Hoffman, K.P. & Wagner, H.J. (1984). Double labelling of retinofugal projections in the cat: A study using anterograde transport of 3H-proline and horseradish peroxidase. Experimental Brain Research 53, 420430.CrossRefGoogle Scholar
Holländer, H. & Sanides, D. (1976). The retinal projection to the ventral part of the lateral geniculate nucleus: An experimental study with silver impregnation methods and axoplasmic protein tracing. Experimental Brain Research 26, 329342.CrossRefGoogle Scholar
Itoh, K., Conley, M. & Diamond, I.T. (1981). Different distribution of large and small ganglion cells in the cat after HRP injections of single layers of the lateral geniculate body and the superior colliculus. Brain Research 207, 147152.CrossRefGoogle ScholarPubMed
Kolb, H., Nelson, R. & Mariani, A. (1981). Amacrine cells, bipolar cells and ganglion cells of the cat retina: A Golgi study. Vision Research 21, 10811114.CrossRefGoogle ScholarPubMed
Kuffler, S.W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology 16, 3768.CrossRefGoogle ScholarPubMed
Leventhal, A.G., Rodieck, R.W. & Dreher, B. (1985). Central projections of cat retinal ganglion cells. Journal of Comparative Neurology 237, 216226.CrossRefGoogle ScholarPubMed
McIlwain, J.T. (1978). Cat superior colliculus: Extracellular potentials related to W-cell synaptic actions. Journal of Neurophysiology 41, 13431358.CrossRefGoogle ScholarPubMed
McIlwain, J.T. & Lufkin, R.B. (1976). Distribution of direct Y-cell input to the cat's superior colliculus: Are there spatial gradients? Brain Research 103, 133138.CrossRefGoogle Scholar
Mize, R.R. (1983). Variations in the retinal synapses of the cat superior colliculus revealed using quantitative electron microscope auto-radiography. Brain Research 269, 211221.CrossRefGoogle Scholar
Mize, R.R. & Horner, L.H. (1984). Retinal synapses of the cat medial interlaminar nucleus and ventral lateral geniculate nucleus differ in size and synaptic organization. Journal of Comparative Neurology 224, 579590.CrossRefGoogle ScholarPubMed
Mize, R.R., Spencer, R.F. & Horner, L.H. (1986). Quantitative comparison of retinal synapses in the dorsal and ventral (parvicellular) C laminae of the cat dorsal lateral geniculate nucleus. Journal of Comparative Neurology 248, 5773.CrossRefGoogle ScholarPubMed
Murakami, D.M., Miller, J.D. & Fuller, C.A. (1989). The retinal hypothalamic tract in the cat: Retinal ganglion cell morphology and pattern of projection. Brain Research 482, 283296.CrossRefGoogle ScholarPubMed
Peichl, P. & Wässle, H. (1981). Morphological identification of on-and off-center brisk-transient (Y) cells in the retina. Proceedings of the Royal Society B (London) 212, 139156.Google Scholar
Robson, J.A. (1983). The morphology of corticofugal axons to the dorsal lateral geniculate nucleus in the cat. Journal of Comparative Neurology 216, 89103.CrossRefGoogle Scholar
Saito, H.A. (1983). Morphology of physiologically identified X-, Y-, and W-type retinal ganglion cells of the cat. Journal of Comparative Neurology 221, 279283.CrossRefGoogle Scholar
Sherman, S.M. (1985). Functional organization of the W-, X-, and Y-cell pathways in the cat: A review and hypothesis. Progress in Psychobiology and Physiological Psychology 11, 233315.Google Scholar
Spear, P.O., Smith, D.C. & Williams, L.L. (1977). Visual receptive field characteristics of single neurons in cat's ventral lateral genicu-late nucleus. Journal of Neurophysiology 40, 390409.CrossRefGoogle ScholarPubMed
Stanford, L.R. (1986). W-cells in the cat retina: Correlative morphological and physiological evidence for two distinctive classes. Journal of Neurophysiology 57, 218244.CrossRefGoogle Scholar
Stanford, L.R. & Sherman, S.M. (1987). X-cells in the cat retina: Relationship between morphology and physiology of one class of cat retinal ganglion cells. Journal of Neurophysiology 58, 940964.CrossRefGoogle Scholar
Stone, J. & Hoffman, K.P. (1972). Very slow-conducting ganglion cells in the cat's retina: A major, new functional type? Brain Research Review 1, 345394.CrossRefGoogle Scholar
Sur, M. & Sherman, S.M. (1982). Retinogeniculate terminals in cats: Morphological differences between X and Y cell axons. Science 218, 389391.CrossRefGoogle ScholarPubMed
Van Den Pol, A.N. & Gorcs, T. (1986). Synaptic relationship between neurons containing vasopressin, gastrin-releasing peptide, vasoactive intestinal polypeptide and glutamate decarboxylase immunoreactivity in the suprachiasmatic nucleus: Dual ultrastructural immunocyto-chemistry with gold-substituted silver peroxidase. Journal of Comparative Neurology 252, 507521.CrossRefGoogle Scholar
Wässle, H. & Illino, R.B. (1980). The retinal projection to the superior colliculus in the cat. A quantitative study with HRP. Journal of Comparative Neurology 190, 333356.CrossRefGoogle Scholar
Weber, A.J. & Kalil, R. E.(1987). Development of corticogeniculate synapses in the cat. Journal of Comparative Neurology 264, 171192.CrossRefGoogle ScholarPubMed
Wono-Riley, M. T.T. (1972). Neuronal and synaptic organization of the normal dorsal lateral geniculate nucleus of the squirrel monkey, sai-miri sciureus. Journal of Comparative Neurology 144, 2560.CrossRefGoogle Scholar
Zàborszky, L. & Heimer, L. (1989). Combination of tracer techniques, especially HRP and PHA-L, with transmitter identification for correlated light and electron microscopic studies. In Neuroanatomical Tract-tracing Methods 2, pp. 4996. New York and London: Plenum Press.CrossRefGoogle Scholar