Skip to main content
×
×
Home

Retinal A2A and A3 adenosine receptors modulate the components of the rat electroretinogram

  • GUDMUNDUR JONSSON (a1) and THOR EYSTEINSSON (a1)
Abstract

Adenosine is a neuromodulator present in various areas of the central nervous system, including the retina. Adenosine may serve a neuroprotective role in the retina, based on electroretinogram (ERG) recordings from the rat retina. Our purpose was to assess the role of A2A and A3 adenosine receptors in the generation and modulation of the rat ERG. The flash ERG was recorded with corneal electrodes from Sprague Dawley rats. Agonists and antagonists for A2A and A3 receptors, and adenosine were injected (5 µl) into the vitreous. The effects on the components of the single flash scotopic and photopic ERGs were examined, and ERG flicker. Adenosine (0.5 mM) increased the mean amplitudes of the scotopic ERG a-waves (68 ± 8 to 97 ± 14 µV, P = 0.042), and b-waves (236 ± 38 µV to 305 ± 42 µV). A2A agonist CGS21680 (2 mM) reduced the mean amplitude of the ERG b-wave, from 298 ± 21 µV in response to the brightest stimulus to 212 ± 19 µV (P = 0.005), and mean scotopic oscillatory potentials (OPs) from 100 ± 9 µV to 47 ± 11 µV (P = 0.023). ZM241385 [4 mM], an A2A antagonist, decreased the scotopic b-wave of the ERG. A3 agonist 2-CI-IB-MECA (0.5 mM) increased the a-wave, while decreasing the scotopic and photopic ERG b-waves, and the scotopic OPs. A3 antagonist VUF5574 (1 mM) increased the mean amplitude of the scotopic a-wave (66 ± 8 to 140 ± 29 µV, P = 0.046) and b-wave (224 ± 20 to 312 ± 39 µV, P = 0.0037). No significant effects on ERG flicker were found. We conclude that retinal neurons containing A2A and/or A3 adenosine receptors contribute to the generation of the ERG a- and b-waves and OPs.

Copyright
Corresponding author
*Address correspondence to: Thor Eysteinsson, PhD, Department of Physiology, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland. E-mail: thoreys@hi.is
References
Hide All
Awatramani, G., Wang, J. & Slaughter, M.M. (2001). Amacrine and ganglion cell contribution to the electroretinogram in amphibian retina. Visual Neuroscience 18, 147156.
Blazynski, C. (1989). Displaced cholinergic, GABAergic amacrine cells in the rabbit retina also contain adenosine. Visual Neuroscience 3, 425431.
Blazynski, C. (1990). Discrete distribution of adenosine receptors in the mammalian retina. Journal of Neurochemistry 54, 648655.
Blazynski, C., Cohen, A.I., Fruh, B. & Niemeyer, G. (1989). Adenosine: Autoradiographic localization and electrophysiologic effects in the cat retina. Investigative Ophthalmology and Visual Science 30, 25332536.
Blazynski, C. & Perez, M.T.R. (1991). Adenosine in vertebrate retina: Locaization, receptor characterization, and function. Cellular and Molecular Biology 11, 463484.
Brass, K.M., Zarbin, M.A. & Snyder, S.H. (1987). Endogenous adenosine and adenosine receptors localized to ganglion cells of the retina. Proceedings of the National Academy of Sciences 84, 39063910.
Bui, B.V. & Fortune, B. (2004). Ganglion cell contributions to the rat full-field electroretinogram. Journal of Physiology 555, 153173.
Burnstock, G. (2007). Purine and pyrimidine receptors. Cellular and Molecular Life Sciences 64, 14711483.
Bush, R.A. & Sieving, P.A. (1994). A proximal retinal component in the primate photopic ERG a-wave. Investigative Ophthalmology and Visual Science 35, 635645.
Ciruela, F., Albergaria, C., Soriano, A., Cuffí, L., Carbonell, L., Sánchez, S., Gandía, J. & Fernández-Dueñas, V. (2010). Adenosine receptors interacting proteins (ARIPs): Behind the biology of adenosine signaling. Biochimica et Biophysica Acta 1798, 920.
Clark, B.D., Kurth-Nelson, Z.L. & Newman, E.A. (2009). Adenosine-evoked hyperpolarization of retinal ganglion cells is mediated by G-protein-coupled inwardly rectifying K+ and small conductance Ca2+-activated K+ channel activation. Journal of Neuroscience 29, 1123711245.
Costenla, A.R., De Mendonca, A., Sebastiao, A. & Ribeiro, J.A. (1999). An adenosine analogue inhibits NMDA-mediated responses in bipolar cells of the retina. Experimental Eye Research 68, 367370.
Dang, T.M., Tsai, T.I., Vingrys, A.J. & Bui, B.V. (2011). Post-receptoral contributions to the rat scotopic electroretinogram a-wave. Documenta Ophthalmologica 122, 149156.
Dunwiddie, T.V. & Masino, S.A. (2001). The role and regulation of adenosine in the central nervous system. Annual Review of Neuroscience 24, 3155.
Dong, C.J. & Hare, W.A. (2002). GABAc feedback pathway modulates the amplitude and kinetics of ERG b-wave in a mammalian retina. Vision Research 42, 10811087.
Fredholm, B.B., Izerman, A.P., Jacobson, K.A., Klotz, K.N. & Linden, J. (2001). International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacological Reviews 53, 527552.
Fredholm, B.B. (2014). Adenosine—A physiological or pathophysiological agent? Journal of Molecular Medicine 92, 201206.
Galvao, J., Elvas, F., Martins, T., Cordeiro, M.F., Ambrósio, A.F. & Santiago, A.R. (2015). Adenosine A3 receptor activation is neuroprotective against retinal neurodegeneration. Experimental Eye Research 140, 6574.
Gao, Z.G., Blaustein, J.B., Gross, A.S., Melman, N. & Jacobson, K.A. (2003). N6-substituted adenosine derivatives: Selectivity, efficacy, and species differences at A3 adenosine receptors. Biochemical Pharmacology 65, 16751684.
Goto, Y. (1996). An electrode to record the mouse electroretinogram. Documenta Ophthalmologica 91, 147154.
Hartwick, A.T.E., Lalonde, M.R., Barnes, S. & Baldridge, W.H. (2004). Adenosine A1 receptor modulation of glutamate-induced calcium influx in rat retinal ganglion cells. Investigative Ophthalmology and Visual Science 45, 37403748.
Huang, P.C., Hsiao, Y.T., Kao, S.Y., Chen, C.F., Chen, C.F., Chiang, C.W., Lee, C.F., Lu, J.C., Chern, J. & Wang, C.T. (2014). Adenosine A2A receptor up-regulates retinal wave frequency via starburst amacrine cells in the developing rat retina. PloS ONE 9, e95090.
Jacobson, K.A. (1998). Adenosine A3 receptors: Novel ligands and paradoxical effects. Trends in Pharmacological Sciences 19, 184191.
Jacobson, K.A. & Gao, Z.G. (2006). Adenosine receptors as therapeutic targets. Nature Reviews Drug Discovery 5, 247264.
Kaelin-Lang, A., Jurklies, B. & Niemeyer, G. (1999). Effects of adenosinergic agents on the vascular resistance and on the optic nerve response in the perfused cat eye. Vision Research 39, 10591068.
Kvanta, A., Seregard, S., Sejersen, S., Kull, B. & Fredholm, B.B. (1997). Localization of adenosine messenger RNAs in the rat eye. Experimental Eye Research 65, 595602.
Lassila, J.K., Zalatan, J.G. & Herschlag, D. (2011). Biological phosphoryl-transfer reactions: Understanding mechanism and catalysis. Annual Review of Biochemistry 80, 669702.
Li, B. & Roth, S. (1999). Retinal ischemic preconditioning in the rat: Requirement for adenosine and repetitive induction. Investigative Ophthalmology and Visual Science 40, 12001216.
Macaluso, C., Frishman, L.J., Frueh, B., Kaeling-Lang, A., Onoe, S. & Niemeyer, G. (2003). Multiple effects of adenosine in the arterially perfused mammalian eye. Possible mechanisms for the neuroprotective function of adenosine in the retina. Documenta Ophthalmologica 106, 5159.
McIntosh, H.H. & Blazynski, C. (1994). Characterization and localization of adenosine A2 receptors in bovine rod outer segments. Journal of Neurochemistry 62, 992997.
Muller, C.E. & Jacobson, K.A. (2011). Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochimica et Biophysica Acta 1808, 12901308.
Mojumder, D.K., Sherry, D.M. & Frishman, L.J. (2008). Contribution of voltage-gated sodium channels to the b-wave of the mammalian flash electroretinogram. Journal of Physiology 586, 25512580.
Möller, A. & Eysteinsson, T. (2003). Modulation of the components of the rat dark-adapted electroretinogram by the three subtypes of GABA receptors. Visual Neuroscience 20, 535542.
Olah, M.E. & Stiles, G.L. (2000). The role of receptor structure in determining adenosine receptor activity. Pharmacology and Therapeutics 85, 5575.
Paes de Carvalho, R., Braas, K.M., Snyder, S.H. & Adler, R. (1990). Analysis of adenosine immunoreactivity, uptake, and release in purified cultures of developing chick embryo retinal neurons and photoreceptors. Journal of Neurochemistry 55, 16011611.
Popova, E. & Kupenova, P. (2009). Contribution of proximal retinal neurons to b- and d-waves of frog electroretinogram under different conditions of light adaptation. Vision Research 49, 20012010.
Poucher, S., Keddie, J., Singh, P., Stoggall, S., Caulkett, P., Jones, G. & Coll, M. (1995). The in vitro pharmacology of ZM241385, a potent, non-xanthine A2a selective adenosine receptor antagonist. British Journal of Pharmacology 115, 10961102.
Quarta, D., Ferre, S., Solinas, M., You, Z.B., Hockemeyer, J., Popoli, P. & Goldberg, S.R. (2004). Opposite modulatory roles for adenosine A1 and A2A receptors on glutamate and dopamine release in the shell of the nucleus accumbens. Effects of chronic caffeine exposure. Journal of Neurochemistry 88, 11511158.
Ralevic, V. & Burnstock, G. (1998). Receptors for purines and pyrimidines. Pharmacological Reviews 50, 413492.
Rey, H.L. & Burnside, B. (1999). Adenosine stimulates cone photoreceptor myoid elongation via an adenosine A2-like receptor. Journal of Neurochemistry 72, 23452355.
Ribelayga, C. & Mangel, S.C. (2005). A circadian clock and light/dark adaptation differentially regulate adenosine in the mammalian retina. Journal of Neuroscience 25, 215222.
Ribeiro, J.A., Sebastiao, A.M. & de Mendonca, A. (2003). Adenosine receptors in the nervous system: Pathophysiological implications. Progress in Neurobiology 68, 377392.
Ribeiro, J.A. & Sebastiao, A.M. (2010). Modulation and metamodulation of synapses by adenosine. Acta Physiologica 199, 161169.
Ridder, W.H., Nusinowitz, S. & Heckenlively, J.R. (2002). Causes of cataract development in anaesthetized mice. Experimental Eye Research 75, 365370.
Robson, J.G. & Frishman, L.J. (1998). Dissecting the dark-adapted electroretinogram. Documenta Ophthalmologica 95, 187215.
Robson, J.G., Saszik, S.M., Ahmed, J. & Frishman, L.J. (2003). Rod and cone contributions to the a-wave of the electroretinogram of the macaque. Journal of Physiology 547, 509530.
Robson, J.G. & Frishman, L.J. (2014). The rod-driven a-wave of the dark-adapted mammalian electroretinogram. Progress in Retinal and Eye Research 39, 122.
Roth, S. (2004). Endogenous neuroprotection in the retina. Brain Research Bulletin 62, 461466.
Rudolphi, K.A., Schubert, P., Parkinson, F.E. & Fredholm, B.B. (1992). Neuroprotective role of adenosine in cerebral ischaemia. Trends in Pharmacological Sciences 13, 439445.
Sebastiao, A.M. & Ribeiro, J.A. (2009). Tuning and fine-tuning of synapses with adenosine. Current Neuropharmacology 7, 180194.
Serrato, A., Tzekov, R. & Marmor, M.F. (2003). The lens-coating agent and the electroretinogram. Documenta Ophthalmologica 106, 225230.
Sodhi, P. & Hartwick, A.T.E. (2014). Adenosine modulates light responses of rat retinal ganglion cell photoreceptors through a cAMP-mediated pathway. Journal of Physiology 592, 42014220.
Smith, B.J., Tremblay, F. & Cote, P.D. (2013). Voltage-gated sodium channels contribute to the b-wave of the rodent electroretinogram by mediating input to rod bipolar cell GABAc receptors. Experimental Eye Research 116, 279290.
Stella, S.L., Bryson, E.J. & Thoreson, W.B. (2002). A2 adenosine receptors inhibit calcium influx through L-type calcium channels in rod photoreceptors of the salamander retina. Journal of Neurophysiology 87, 351360.
Stella, S.L., Bryson, E.J., Cadetti, L. & Thoreson, W.B. (2003). Endogenous adenosine reduces glutamatergic output from rods through activation of A2-like adenosine receptors. Journal of Neurophysiology 90, 165174.
Stella, S.L., Hu, W.D., Vila, A. & Brecha, N.C. (2007). Adenosine inhibits voltage-dependent Ca2+-influx in cone photoreceptor terminals of the tiger salamander retina. Journal of Neuroscience Research 85, 11261137.
Stella, S.L., Hu, W.D. & Brecha, N.C. (2009). Adenosine suppresses exocytosis from cone terminals of the salamander retina. NeuroReport 20, 923929.
Stockton, R.A. & Slaughter, M.M. (1989). B-wave of the electroretinogram: A reflection of on-bipolar cell activity. Journal of General Physiology 93, 101122.
Stone, T.W., Ceruti, S. & Abbracchio, M.P. (2009). Adenosine receptors and neurological disease: Neuroprotection and neurodegeneration. Handbook of Experimental Pharmacology 193, 535587.
Studholme, K.M. & Yazulla, S. (1997). 3H-adenosine uptake selectively labels rod horizontal cells in goldfish retina. Visual Neuroscience 14, 207212.
Sun, X., Barnes, S. & Baldridge, W.H. (2002). Adenosine inhibits calcium channel currents via A1 receptors on salamander retinal ganglion cells in a mini-slice preparation. Journal of Neurochemistry 81, 550556.
van Muijlwijk-Koezen, J.E., Timmerman, H., van der Goot, H., Menge, W.M.P.B., Kunzel, J.F.D., de Groote, M. & Ijzerman, P. (2000). Isoquinoline and quinazoline urea analogues as antagonists for the human adenosine A3 receptor. Journal of Medicinal Chemistry 43, 22272238.
Wachtmeister, L. (1998). Oscillatory potentials in the retina: What do they reveal? Progress in Retinal and Eye Research 17, 485521.
Wang, C., Blankenship, A.G., Anishchenko, A., Elstrott, J., Fikhman, M., Nakanishi, S. & Feller, M.B. (2007). GABAa receptor-mediated signaling alters the structure of spontaneous activity in the developing retina. Journal of Neuroscience 27, 91309140.
Zhang, C. & McCall, M.A. (2012). Receptor targets of amacrine cells. Visual Neuroscience 29, 1129.
Zhang, X., Budak, M., Lu, W., Khurana, T., Zhang, X., Laties, A.M. & Mitchell, C.H. (2006). Identification of the A3 adenosine receptor in rat retinal ganglion cells. Molecular Vision 12, 937948.
Zhang, M., Hu, H., Zhang, X., Lu, W., Lim, J., Eysteinsson, T., Jacobson, K.A., Laties, A.M. & Mitchell, C.H. (2010). The A3 adenosine receptor attenuates the calcium rise triggered by NMDA receptors in retinal ganglion cells. Neurochemistry International 56, 3541.
Zhong, Y., Yang, Z., Huang, W.C. & Luo, X. (2013). Adenosine, adenosine receptors and glaucoma: An updated overview. Biochimica et Biophysica Acta 1830, 28822890.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 16
Total number of PDF views: 109 *
Loading metrics...

Abstract views

Total abstract views: 447 *
Loading metrics...

* Views captured on Cambridge Core between 12th January 2017 - 18th July 2018. This data will be updated every 24 hours.