Skip to main content Accessibility help

Research advances of adipocyte differentiation in poultry

  • W. WANG (a1)


Preadipocytes are distinct precursor cells with the ability to generate and differentiate into adipocytes - a process that is regulated by a variety of genes. Adipocyte differentiation has been extensively studied in mammals; however, little is known about adipocyte differentiation in poultry. This review summarises the isolation, in vitro culture and characterisation of poultry preadipocytes. The most commonly used method for isolating primary preadipocytes is collagenase digestion and the cells are cultured in an incubator with 5% CO2 at 37°C. Preadipocytes of most species can differentiate into mature adipocytes using a combination of growth factors (a so-called ‘hormone cocktail’), which include 3-isobutyl-1-methylxanthine (IBMX), dexamethasone (DEX) and insulin. Only the addition of a fatty acid mixture, transferrin, insulin and albumin induced primary preadipocyte differentiation, indicating that exogenous fatty acids are key factors that influence this process in chickens. As for the molecular regulation of poultry preadipocytes, studies have found several transcription factors that regulate adipose differentiation, which included peroxisome proliferator-activated receptors (PPARs), CCAAT/enhancer binding proteins (C/EBPs) and sterol response element-binding proteins (SREBPs). These transcription factors have been shown to regulate adipocyte differentiation by affecting the expression levels or activity of target genes.


Corresponding author

Corresponding author:


Hide All
BAI, S., WANG, G., ZHANG, W., ZHANG, S., RICE, B.B., CLINE, M.A. and GILBERT, E.R. (2015) Broiler chicken adipose tissue dynamics during the first two weeks post-hatch. Comparative Biochemistry and Physiology A-molecular & Integrative Physiology 189: 115-123.
BLACK, P.N., AHOWESSO, C., MONTEFUSCO, D., SAINI, N. and DIRUSSO, C.C. (2016) Fatty Acid Transport Proteins:Targeting FATP2 as a Gatekeeper Involved in the Transport of Exogenous Fatty Acids. MEDCHEMCOMM 7: 612-622.
BOHAN, A.E., PURVIS, K.N., BARTOSH, J.L. and BRANDEBOURG, T.D. (2014) The proliferation and differentiation of primary pig preadipocytes is suppressed when cultures are incubated at 37°Celsius compared to euthermic conditions in pigs. Adipocyte 3: 322-332.
CHEN, Y.C., WU, C.Y. and ZHANG, Z.W. (2017) Effect of Krüppel-like factor 2 (KLF2) over-expression on activities of chicken PPARγ and C/EBPα promoters. Journal of cellular and molecular immunology 8: 1045-1050.
CHENG, B., WU, M., XU, S., ZHANG, X., WANG, Y., WANG, N., LENG, L. and LI, H. (2016) Cocktail supplement with rosiglitazone: a novel inducer for chicken preadipocyte differentiation in vitro. Bioscience Reports 36: e00401.
CRYER, J., WOODHEAD, B.G. and CRYER, A. (1987) The isolation and characterisation of a putative adipocyte precursor cell type from the white adipose tissue of the chicken (Gallus domesticus). Comparative Biochemistry and Physiology A-molecular & Integrative Physiology 86: 515-521.
DING, F., LI, Q.Q., LI, L., GAN, C., YUAN, X., GOU, H., HE, H., HAN, C.C. and WANG, J.W. (2015) Isolation, culture and differentiation of duck (Anas platyrhynchos) preadipocytes. Cytotechnology 67: 773-781.
DING, F., PAN, Z., KOU, J., LI, L., XIA, L., HU, S., LIU, H. and WANG, J. (2012) De novo lipogenesis in the liver and adipose tissues of ducks during early growth stages after hatching. Comparative Biochemistry and Physiology B-biochemistry & Molecular Biology 163: 154-160.
DING, F., QIU, J., LI, Q., HU, J., SONG, C., HAN, C., HE, H. and WANG, J. (2016) Effects of rosiglitazone on proliferation and differentiation of duck preadipocytes. In Vitro Cellular & Developmental Biology-animal 52: 174-181.
DING, N., GAO, Y., WANG, N. and LI, H. (2011) Functional analysis of the chicken PPARgamma gene 5'-flanking region and C/EBPalpha-mediated gene regulation. Comparative Biochemistry and Physiology B-biochemistry & Molecular Biology 158: 297-303.
DUAN, K., SUN, Y., ZHANG, X., ZHANG, T., ZHANG, W., ZHANG, J., WANG, G., WANG, S., LENG, L., LI, H. and WANG, N. (2015) Identification and characterization of transcript variants of chicken peroxisome proliferator-activated receptor gamma. Poultry Science 94: 2516-2527.
FAN, L., HSIEH, P.N., SWEET, D.R. and JAIN, M.K. (2017) Kruppel-like factor 15: Regulator of BCAA metabolism and circadian protein rhythmicity. Pharmacological Research 130: 123-126.
GUO, L., SUN, B., SHANG, Z., LENG, L., WANG, Y., WANG, N. and LI, H. (2011) Comparison of adipose tissue cellularity in chicken lines divergently selected for fatness. Poultry Science 90: 2024-2034.
HASSAN, A., AHN, J., SUH, Y., CHOI, Y.M., CHEN, P. and LEE, K. (2014) Selenium promotes adipogenic determination and differentiation of chicken embryonic fibroblasts with regulation of genes involved in fatty acid uptake, triacylglycerol synthesis and lipolysis. Journal of Nutritional Biochemistry 25: 858-867.
HE, J., TIAN, Y., LI, J.J., SHEN, J.D., TAO, Z.R., FU, Y., NIU, D. and LU, L.Z. (2012) Expression pattern of adipocyte fatty acid-binding protein gene in different tissues and its regulation of genes related to adipocyte differentiation in duck. Poultry Science 91: 2270-2274.
HOCKING, P.M. (2014) Unexpected consequences of genetic selection in broilers and turkeys: problems and solutions. British Poultry Science 55: 1-12.
KLEIN, R.H., HU, W., KASHGARI, G., LIN, Z., NGUYEN, T., DOAN, M. and ANDERSEN, B. (2017) Characterization of enhancers and the role of the transcription factor KLF7 in regulating corneal epithelial differentiation. Journal of Biological Chemistry 292: 18937-18950.
LANDROCK, D., MILLIGAN, S., MARTIN, G.G., MCLNTOSH, A.L., LANDROCK, K.K., SCHROEDER, F. and KIER, A.B. (2017) Effect of Fabp1/Scp-2/Scp-x Ablation on Whole Body and Hepatic Phenotype of Phytol-Fed Male Mice. Lipids 52: 385-397.
LEE, J.E. and GE, K. (2014) Transcriptional and epigenetic regulation of PPARgamma expression during Adipogenesis. Cell and Bioscience 4: 29.
LAY, L.S., LEFRÈRE, I., TRAUTWEIN, C., DUGAIL, I. and KRIEF, S. (2002) Insulin and sterol-regulatory element-binding protein-1c (SREBP-1C) regulation of gene expression in 3T3-L1 adipocytes: Identification of CCAAT/enhancer-binding protein beta as an SREBP-1C target. Journal of Biological Chemistry 277: 35625-35634.
LIN, R.L., CHEN, H.P., ROUVIER, R. and MARIE-ETANCELIN, C. (2016) Genetic parameters of body weight, egg production, and shell quality traits in the Shan Ma laying duck. Poultry Science 95: 2514-2519.
LIU, S., WANG, Y., WANG, L., WANG, N., LI, Y. and LI, H. (2010) Transdifferentiation of fibroblasts into adipocyte-like cells by chicken adipogenic transcription factors. Comparative Biochemistry and Physiology A-molecular & Integrative Physiology 156: 502-508.
MATSUBARA, Y., AOKI, M., ENDO, T. and SATO, K. (2013) Characterization of the expression profiles of adipogenesis-related factors, ZNF423, KLFs and FGF10, during preadipocyte differentiation and abdominal adipose tissue development in chickens. Bioscience Biotechnology and Biochemistry 165: 189-195.
MATSUBARA, Y., ENDO, T. and KANO, K. (2008) Fatty acids but not dexamethasone are essential inducers for chick adipocyte differentiation in vitro. Comparative Biochemistry and Physiology A-molecular & Integrative Physiology 151: 511-518.
MATSUBARA, Y., SATO, K., ISHII, H. and AKIBA, Y. (2005) Changes in mRNA expression of regulatory factors involved in adipocyte differentiation during fatty acid induced adipogenesis in chicken. Comparative Biochemistry and Physiology A-molecular & Integrative Physiology 141: 108-115.
MOTA, S.P., RICHARD, A.J., HANG, H. and STEPHENS, J.M. (2017) Transcriptional Regulation of Adipogenesis. Comprehensive Physiology 7: 635-674.
ROSEN, E.D., HSU, C.H., WANG, X., SAKAI, S., FREEMAN, M.W., GONZALEZ, F.J. and SPIEGELMAN, B.M. (2002) C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes & Development 16: 22-26.
QI, R., FENG, M., TAN, X., GAN, L., YAN, G. and SUN, C. (2013) FATP1 silence inhibits the differentiation and induces the apoptosis in chicken preadipocytes. Molecular Biology Reports 40: 2907-2914.
SHANG, Z., GUO, L., WANG, N., SHI, H., WANG, Y. and LI, H. (2014) Oleate promotes differentiation of chicken primary preadipocytes in vitro. Bioscience Reports 34: 51-57.
SHI, H., WANG, Q., WANG, Y., LENG, L., ZHANG, Q., SHANG, Z. and LI, H. (2010) Adipocyte fatty acid-binding protein: an important gene related to lipid metabolism in chicken adipocytes. Comparative Biochemistry and Physiology B-biochemistry & Molecular Biology 157: 357-363.
SHIPP, S.L., CLINE, M.A. and GILBERT, E.R. (2016) Promotion of adipogenesis by neuropeptide Y during the later stages of chicken preadipocyte differentiation. Physiological Reports 4: e13006.
SMITH, U. and KAHN, B.B. (2016) Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. Journal of Internal Medicine 280: 465-475.
SONG, Z., CHENG, J., YANG, H., LI, Y., GAO, Q., SHI, X. and YANG, G. (2015) Differentiation of 3T3‐L1 preadipocytes is inhibited under a modified ceiling culture. Cell Biology International 39: 638-645.
TONTONOZ, P. and SPIEGELMAN, B.M. (2008) Fat and beyond: the diverse biology of PPARgamma. Annual Review of Biochemistry 77: 289-312.
WANG, G., KIM, W.K., CLINE, M.A. and GILBERT, E.R. (2017a) Factors affecting adipose tissue development in chickens: A review. Poultry Science 96: 3687-3699.
WANG, L., LI, X., MA, J., ZHANG, Y. and ZHANG, H. (2017b) Integrating genome and transcriptome profiling for elucidating the mechanism of muscle growth and lipid deposition in Pekin ducks. Scientific Reports 7: 3837.
WANG, L., NA, W., WANG, Y.X., WANG, Y.B., WANG, N., WANG, Q.G., LI, Y.M. and LI, H. (2012) Characterization of chicken PPARgamma expression and its impact on adipocyte proliferation and differentiation. Yi Chuan 34: 454-464.
WITTE, N., MUENZNER, M., RIETSCHER, J., KNAUER, M., HEIDENREICH, S., NUOTIO-ANTAR, A.M., GRAEF, F.A., FEDDERS, R., TOLKACHOV, A., GOEHRING, I. and SCHUPP, M. (2015) The glucose sensor ChREBP links de novo lipogenesis to PPARgamma activity and adipocyte differentiation. Endocrinology156: 4008-4019.
XIE, W., HAMILTON, J.A., KIRKLAND, J.L., CORKEY, B.E. and GUO, W. (2006) Oleate-induced formation of fat cells with impaired insulin sensitivity. Lipids 41: 267-271.
XIONG, M., LI, S., PENG, X., FENG, Y., YU, G., XIN, Q. and GONG, Y. (2010) Adipogenesis in ducks interfered by small interfering ribonucleic acids of peroxisome proliferator-activated receptor gamma gene. Poultry Science 89: 88-95.
YAN, J., YANG, H., GAN, L. and SUN, C. (2014) Adiponectin-impaired adipocyte differentiation negatively regulates fat deposition in chicken. Journal of Animal Physiology and Animal Nutrition 98: 530-537.
YUE, Y., ZHANG, L., ZHANG, X., LI, X. and YU, H. (2018) De novo lipogenesis and desaturation of fatty acids during adipogenesis in bovine adipose-derived mesenchymal stem cells. In Vitro Cellular & Developmental Biology-animal 54: 23-31.
ZHANG, T., ZHANG, X., HAN, K., ZHANG, G., WANG, J., XIE, K. and XUE, Q. (2017a) Genome-wide analysis of lncRNA and mRNA expression during differentiation of abdominal preadipocytes in the chicken. G3-Genes Genomes Genetics 7: 953-966.
ZHANG, T., ZHANG, X., HAN, K., ZHANG, G., WANG, J., XIE, K., XUE, Q. and FAN, X. (2017b) Analysis of long noncoding RNA and mRNA using RNA sequencing during the differentiation of intramuscular preadipocytes in chicken. PloS One 12: e0172389.
ZHANG, X.Y., WU, M.Q., WANG, S.Z., ZHANG, H., DU, Z.Q., LI, Y.M., CAO, Z.P., LUAN, P., LENG, L. and LI, H. (2017c) Genetic selection on abdominal fat content alters the reproductive performance of broilers. Animal 12: 1232-1241.
ZHANG, Z., WANG, H., SUN, Y., LI, H. and WANG, N. (2013) Klf7 modulates the differentiation and proliferation of chicken preadipocyte. Acta Biochimica et Biophysica Sinica 45: 280-288.
ZHANG, Z.W., RONG, E.G., SHI, M.X., WU, C.Y., SUN, B., WANG, Y.X., WANG, N. and LI, H. (2014a) Expression and functional analysis of Kruppel-like factor 2 in chicken adipose tissue. Journal of Animal Science 92: 4797-4805.
ZHANG, Z.W., WU, C.Y., LI, H. and WANG, N. (2014b) Expression and functional analyses of Kruppel-like factor 3 in chicken adipose tissue. Bioscience Biotechnology and Biochemistry 78: 614-623.


Research advances of adipocyte differentiation in poultry

  • W. WANG (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed