Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T13:47:08.267Z Has data issue: false hasContentIssue false

Comparative analysis of biochemical, hormonal, and mineral compositions of preovulatory and cystic ovarian follicles in buffalo during the non-breeding season

Published online by Cambridge University Press:  15 March 2023

Brijesh Kumar*
Affiliation:
Animal Reproduction Division, ICAR- Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, 243122, India
B.L. Kumawat
Affiliation:
Assistant Professor, Dept. of ARGO, CV &AS, (MAFSU), Prabhani, 431 402, Maharashtra, India
F.A. Khan
Affiliation:
Currently: Theriogenology, Department of Population Medicine, Ontario Veterinary College, University of Guelph, Ontario, Canada
G.K. Das
Affiliation:
Animal Reproduction Division, ICAR- Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, 243122, India
S.K. Maurya
Affiliation:
Deen Dayal Upadhyaya Veterinary and Animal Sciences University (DUVASU), Mathura, Uttar Pradesh, 281001, India
P. Chandra
Affiliation:
Animal Reproduction Division, ICAR- Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, 243122, India
Vandana
Affiliation:
Animal Reproduction Division, ICAR- Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, 243122, India
Jai Singh
Affiliation:
Animal Reproduction Division, ICAR- Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, 243122, India
Vikas Sachan
Affiliation:
Deen Dayal Upadhyaya Veterinary and Animal Sciences University (DUVASU), Mathura, Uttar Pradesh, 281001, India
M.H. Jan
Affiliation:
ICAR – Central Institute for Research on Buffaloes, Sub Campus, Nabha (Punjab) 147 201
K. Narayanan
Affiliation:
ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru Campus 560024, India
*
Author for correspondence: Brijesh Kumar. Animal Reproduction Division, ICAR Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, 243122, India. Tel: +91 9005711815. Fax: 0581-2231238. E-mail: drbrijeshvet02@gmail.com

Summary

This study is a comparative analysis of the biochemical, hormonal, and mineral compositions of follicular fluid in preovulatory and cystic follicles of water buffalo (Bubalus bubalis). In total, reproductive tracts from 215 buffalo along with intact ovaries were collected randomly from an abattoir. The incidence of cystic conditions found in this study was 3.72% (8/215), involving the right ovary in 62.5% of instances and the left ovary in 37.5% of instances during the non-breeding season. Follicular fluid was aspirated from preovulatory follicles (12–15 mm diameter, oestrogen-active, follicular phase or stage IV corpus luteum on one of the two ovaries, n = 10) and cystic follicles (at least 20 mm diameter, no corpus luteum on any one of the two ovaries, n = 8). The follicular fluid samples were assayed for biochemical components (uric acid, creatinine, blood urea nitrogen, cholesterol, total protein, glucose, ascorbic acid, and alkaline phosphatase), hormones (progesterone, estradiol, and insulin), and minerals (calcium, magnesium, phosphorus, copper, zinc, and cobalt). Cystic follicles had greater (P < 0.05) concentrations of creatinine, blood urea nitrogen, cholesterol, progesterone, copper, zinc, and cobalt, and lesser (P < 0.05) concentrations of uric acid, glucose, ascorbic acid, estradiol, insulin, calcium, magnesium, and phosphorus compared with preovulatory follicles. These results indicated the marked differences in follicular fluid composition between preovulatory and cystic follicles in buffalo. Some of the changes were indicative of oxidative stress and disturbed steroidogenesis, two important mechanisms shown to be associated with cystic ovarian disease in various species. Further studies are warranted to investigate whether these differences are directly or indirectly involved in the formation of cystic follicles or are mere manifestations of the condition.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abd Ellah, M. R., Hussein, H. A. and Derar, D. R. (2010). Ovarian follicular fluid constituents in relation to stage of estrus cycle and size of the follicle in buffalo. Veterinary World, 3, 263267.Google Scholar
Ahmed, W. M. (2007). Overview of some factors negatively affecting ovarian activity in large farm animals. Global Veterinarian, 1, 5366.Google Scholar
Ahmed, W. M., Bashandy, M. M., Ibrahim, A. K., Shalaby, S. I. A., El-Moez, S. I. A., Ei-Moghazy, F. M. and Ibrahim, S. R. E. (2010). Investigations on delayed puberty in Egyptian buffalo-heifers with emphasis on clinicopathological changes and treatment using GnRH (Receptal). Global Veterinarian, 4, 7885.Google Scholar
Akhtar, M. S., Farooq, A. A. and Mushtaq, M. (2009). Serum concentrations of copper, iron, zinc and selenium in cyclic and anoestrus Nili-Ravi buffaloes kept under farm conditions. Pakistan Veterinary Journal, 29, 4748.Google Scholar
Alkalby, JMA, Bushra, FH and Fahad, T. (2012). A study on some hormonal and biochemical constituents of follicular fluid and blood plasma in buffaloes. Journal of Veterinary Research, 11, 90102.Google Scholar
Arshad, H. M., Ahmad, N., Rahman, Z. U., Samad, H. A., Akhtar, N. and Ali, S. (2005). Studies on some biochemical constituents of ovarian follicular fluid and peripheral blood in buffaloes. Pakistan Veterinary Journal, 25, 189193.Google Scholar
Aten, R. F., Duarte, K. M. and Behrman, H. R. (1992). Regulation of ovarian antioxidant vitamins, reduced glutathione and lipid peroxidation by luteinizing hormone and prostaglandin F2α. Biology of Reproduction, 46(3), 401407. doi: 10.1095/biolreprod46.3.401 CrossRefGoogle Scholar
Bauchart, D. (1993). Lipid absorption and transport in ruminants. Journal of Dairy Science, 76(12), 38643881. doi: 10.3168/jds.S0022-0302(93)77728-0 CrossRefGoogle ScholarPubMed
Bertevello, P. S., Teixeira-Gomes, A. P., Labas, V., Cordeiro, L., Blache, M. C., Papillier, P., Singina, G., Uzbekov, R., Maillard, V. and Uzbekova, S. (2020) MALDI-TOF mass spectrometry revealed significant lipid variations in follicular fluid and somatic follicular cells but not in enclosed oocytes between the large dominant and small subordinate follicles in bovine ovary. International Journal of Molecular Sciences, 21(18), 6661. doi: 10.3390/ijms21186661 CrossRefGoogle Scholar
Bloom, M. S., Kim, K., Fujimoto, V. Y. and Browne, R. W. (2014). Variability in the components of high-density lipoprotein particles measured in human ovarian follicular fluid: A cross-sectional analysis. Fertility and Sterility, 101(5), 14311440. doi: 10.1016/j.fertnstert.2014.01.028 CrossRefGoogle ScholarPubMed
BorŞ, S. I. and BorŞ, A. (2020). Ovarian cysts, an anovulatory condition in dairy cattle. Journal of Veterinary Medical Science, 82(10), 15151522. doi: 10.1292/jvms.20-0381 CrossRefGoogle ScholarPubMed
Braw-Tal, R., Pen, S. and Roth, Z. (2009). Ovarian cysts in high-yielding dairy cows. Theriogenology, 72(5), 690698. doi: 10.1016/j.theriogenology.2009.04.027 CrossRefGoogle ScholarPubMed
Brito, L. F. C. and Palmer, C. W. (2004). Cystic ovarian disease in cattle. Large Animal Veterinary Rounds 16.Google Scholar
Burle, P. M., Mangle, N. S., Kothekar, M. D. and Kalorey, D. R. (1995). Blood biochemical profiles during various reproductive states of Sahiwal and Jersey X Sahiwal cattle. Livestock Advisor, 20, 1320.Google Scholar
Burrows, G. H. and Barnea, A. (1982). Comparison of the effects of ATP, Mg2+, and MgATP on the release of luteinizing hormone-releasing hormone from isolated hypothalamic granules. Journal of Neurochemistry, 38(2), 569573. doi: 10.1111/j.1471-4159.1982.tb08664.x CrossRefGoogle ScholarPubMed
Butler, S. T., Pelton, S. H. and Butler, W. R. (2004). Insulin increases 17β estradiol production by the dominant follicle of the first postpartum follicle wave in dairy cows. Reproduction, 127(5), 537545. doi: 10.1530/rep.1.00079 CrossRefGoogle ScholarPubMed
Cattaneo, L., Signorini, M. L., Bertoli, J., Bartolomé, J. A., Gareis, N. C., Díaz, P. U., , G. A. and Ortega, H. H. (2014). Epidemiological description of cystic ovarian disease in argentine dairy herds: Risk factors and effects on the reproductive performance of lactating cows. Reproduction in Domestic Animals, 49(6), 10281033. doi: 10.1111/rda.12432 CrossRefGoogle ScholarPubMed
Da Broi, M. G., Giorgi, V. S., Wang, F., Keefe, D. L., Albertini, D. and Navarro, P. A. (2018). Influence of follicular fluid and cumulus cells on oocyte quality: clinical implications. Journal of Assisted Reproduction and Genetics, 35, 735751.CrossRefGoogle ScholarPubMed
Das, G. K. and Khan, F. A. (2010). Summer anoestrus in buffalo—A review. Reproduction in Domestic Animals, 45(6), e483e494. doi: 10.1111/j.1439-0531.2010.01598.x CrossRefGoogle ScholarPubMed
Dastorani, M., Aghadavod, E., Mirhosseini, N., Foroozanfard, F., Zadeh Modarres, S., Amiri Siavashani, M. and Asemi, Z. (2018). The effects of vitamin D supplementation on metabolic profiles and gene expression of insulin and lipid metabolism in infertile polycystic ovary syndrome candidates for in vitro fertilization. Reproductive Biology and Endocrinology: RB&E, 16(1), 94. doi: 10.1186/s12958-018-0413-3 CrossRefGoogle ScholarPubMed
Espey, L. L. (1994). Current status of the hypothesis that mammalian ovulation is comparable to an inflammatory reaction. Biology of Reproduction, 50(2), 233238. doi: 10.1095/biolreprod50.2.233 CrossRefGoogle Scholar
Fortune, J. E., Rivera, G. M. and Yang, M. Y. (2004). Follicular development: The role of the follicular microenvironment in selection of the dominant follicle. Animal Reproduction Science, 82–83, 109126. doi: 10.1016/j.anireprosci.2004.04.031 CrossRefGoogle ScholarPubMed
Garverick, H. A. (1997). Ovarian follicular cysts in dairy cows. Journal of Dairy Science, 80(5), 9951004. doi: 10.3168/jds.S0022-0302(97)76025-9 CrossRefGoogle ScholarPubMed
Gerard, N., Loiseau, S., Duchamp, G. and Seguin, F. (2002). Analysis of the variations of follicular fluid composition during follicular growth and maturation in the mare using proton nuclear magnetic resonance (1H NMR). Reproduction, 124, 241248. doi: 10.1530/rep.0.1240241 CrossRefGoogle ScholarPubMed
Hafez, E. S. E., Jainudeen, M. R. and Rosnina, Y. (2000). Hormones, growth factors and reproduction. In Hafez, E. S. E. & Hafez, B. (Eds.), Reproduction in farm animals (7th ed) (pp. 3354). Lippincott Williams & Wilkins.CrossRefGoogle Scholar
Hamilton, K. P., Zelig, R., Parker, A. R. and Haggag, A. (2019). Insulin resistance and serum magnesium concentrations among women with polycystic ovary syndrome. Current Developments in Nutrition, 3(11), nzz108. doi: 10.1093/cdn/nzz108 CrossRefGoogle ScholarPubMed
Hatler, T. B., Hayes, S. H., Laranja da Fonseca, L. F. and Silvia, W. J. (2003) Relationship between endogenous progesterone and follicular dynamics in lactating dairy cows with ovarian follicular cysts. Biology of Reproduction, 69(1), 218223. doi: 10.1095/biolreprod.102.012179 CrossRefGoogle ScholarPubMed
Hooijer, G. A., van Oijen, M. A. A. J., Frankena, K. and Noordhuizen, J. P. T. M. (2003). Milk production parameters in early lactation: Potential risk factors of cystic ovarian disease in Dutch dairy cows. Livestock Production Science, 81(1), 2533. doi: 10.1016/S0301-6226(02)00226-9 CrossRefGoogle Scholar
Hurley, W. L. and Doane, R. M. (1989). Recent developments in the roles of vitamins and minerals in reproduction. Journal of Dairy Science, 72(3), 784804. doi: 10.3168/jds.S0022-0302(89)79170-0 CrossRefGoogle ScholarPubMed
Kalmath, G. P. and Ravindra, J. P. (2007). Mineral profiles of ovarian antral follicular fluid in buffalo during follicular development. Indian Journal of Animal Research, 41, 8293.Google Scholar
Kawashima, C., Fukihara, S., Maeda, M., Kaneko, E., Montoya, C. A., Matsui, M., Shimizu, T., Matsunaga, N., Kida, K., Miyake, Y., Schams, D. and Miyamoto, A. (2007). Relationship between metabolic hormones and ovulation of dominant follicle during the first follicular wave post-partum in high-producing dairy cows. Reproduction, 133(1), 155163. doi: 10.1530/REP-06-0046 CrossRefGoogle ScholarPubMed
Khan, F. A., Das, G. K., Pande, M., Pathak, M. K. and Sarkar, M. (2011). Biochemical and hormonal composition of follicular cysts in water buffalo (Bubalus bubalis). Animal Reproduction Science, 124(1–2), 6164. doi: 10.1016/j.anireprosci.2011.02.020 CrossRefGoogle ScholarPubMed
Kim, K., Bloom, M. S., Browne, R. W., Bell, E. M., Yucel, R. M. and Fujimoto, V. Y. (2017). Associations between follicular fluid high density lipoprotein particle components and embryo quality among in vitro fertilization patients. Journal of Assisted Reproduction and Genetics, 34(1), 110. doi: 10.1007/s10815-016-0826-x CrossRefGoogle ScholarPubMed
Kolmer, J. A., Spanbling, E. H. and Robinson, H. W. (1951). Approved laboratory techniques. Appleton Century Crafts Inc., New York.Google Scholar
Lak, B. M. (2007). Evaluation of some biochemical and hormonal factors in postpartum anestrus period in Azar Neghin Dasht dairy farm [MSc Thesis]. University of Tabriz (in Persian).Google Scholar
Landau, S., Braw-Tal, R., Kaim, M., Bor, A. and Bruckental, I. (2000). Preovulatory follicular status and diet affect the insulin and glucose content of follicles in high-yielding dairy cows. Animal Reproduction Science, 64(3–4), 181197. doi: 10.1016/s0378-4320(00)00212-8 CrossRefGoogle ScholarPubMed
Leroy, J. L., Vanholder, T., Delanghe, J. R., Opsomer, G., Van Soom, A., Bols, P. E. and de Kruif, A. (2004). Metabolite and ionic composition of follicular fluid from different-sized follicles and their relationship to serum concentrations in dairy cows. Animal Reproduction Science, 80(3–4), 201211. doi: 10.1016/S0378-4320(03)00173-8 CrossRefGoogle ScholarPubMed
López-Gatius, F. (2003). Is fertility declining in dairy cattle? A retrospective study in northeastern Spain. Theriogenology, 60(1), 8999. doi: 10.1016/s0093-691x(02)01359-6 CrossRefGoogle ScholarPubMed
López-Gatius, F., Santolaria, P., Yániz, J., Fenech, M. and López-Béjar, M. (2002). Risk factors for postpartum ovarian cysts and their spontaneous recovery or persistence in lactating dairy cows. Theriogenology, 58(8), 16231632. doi: 10.1016/s0093-691x(02)01046-4 CrossRefGoogle ScholarPubMed
Luck, M. R., Jeyaseelan, I. and Scholes, R. A. (1995). Ascorbic acid and fertility. Biology of Reproduction, 52(2), 262266. doi: 10.1095/biolreprod52.2.262 CrossRefGoogle ScholarPubMed
Luktuke, S. N. and Arora, R. L. (1972). Studies on cystic degeneration of ovaries in buffalo females. Indian Veterinary Journal, 49, 6869.Google Scholar
Meur, S. K., Sanwal, P. C. and Yadav, M. C. (1999). Ascorbic acid in buffalo ovary in relation to oestrous cycle. Indian Journal of Biochemistry and Biophysics, 36(2), 134135.Google ScholarPubMed
Murray, A. A., Molinek, M. D., Baker, S. J., Kojima, F. N., Smith, M. F., Hillier, S. G. and Spears, N. (2001). Role of ascorbic acid in promoting follicle integrity and survival in intact mouse ovarian follicles in vitro . Reproduction, 121(1), 8996. doi: 10.1530/rep.0.1210089 CrossRefGoogle ScholarPubMed
Nanda, A. S., Brar, P. S. and Prabhakar, S. (2003). Enhancing reproductive performance in dairy buffalo: Major constraints and achievements. Reproduction, 61 (Suppl.), 2736. doi: 10.1530/biosciprocs.5.003 Google ScholarPubMed
Pascu, T., Suteanu, M. and Lunca, H. (1970). Concentration de la vitamine C dans le liquide folliculaire normal, pendent les differentes phases du cycle oestral et dans le liquide des kystes ovariens (folliculaires et lutiniques), ainsi que dans le sang des memes vaches. [Concentration of vitamin C in normal follicular fluid, during the different phases of the estrous cycle and in the fluid of ovarian cysts (follicular and lutinic), as well as in the blood of the same cows.] Recueil de medecine veterinaire, 147, 10211029.Google Scholar
Peracchia, C. (1978). Calcium effects on gap junction structure and cell coupling. Nature, 271(5646), 669671. doi: 10.1038/271669a0 CrossRefGoogle ScholarPubMed
Phogat, J. B., Pandey, A. K. and Singh, I. (2016). Seasonality in buffaloes reproduction. International Journal of Plant, Animal and Environmental Sciences, 6, 4654.Google Scholar
Robinson, R. S., Hunter, M. G. and Mann, G. E. (2006). Supra-basal progesterone concentrations during the follicular phase are associated with development of cystic follicles in dairy cows. Veterinary Journal, 172(2), 340346. doi: 10.1016/j.tvjl.2005.04.004 CrossRefGoogle ScholarPubMed
Safari, H., Hajian, M., Nasr-Esfahani, M. H., Forouzanfar, M. and Drevet, J. R. (2022). Vitamin D and calcium, together and separately, play roles in female reproductive performance. Scientific Reports, 12(1), 10470. doi: 10.1038/s41598-022-14708-7 CrossRefGoogle ScholarPubMed
Sharifi, F., Mazloomi, S., Hajihosseini, R. and Mazloomzadeh, S. (2012). Serum magnesium concentrations in polycystic ovary syndrome and its association with insulin resistance. Gynecological Endocrinology, 28(1), 711. doi: 10.3109/09513590.2011.579663 CrossRefGoogle ScholarPubMed
Silvia, W. J., Hatler, T. B., Nugent, A. M. and Laranja da Fonseca, L. F. (2002). Ovarian follicular cysts in dairy cows: An abnormality in folliculogenesis. Domestic Animal Endocrinology, 23(1–2), 167177. doi: 10.1016/s0739-7240(02)00154-6 CrossRefGoogle ScholarPubMed
Spicer, L. J. and Echternkamp, S. E. (1995). The ovarian insulin and insulin-like growth factor system with an emphasis on domestic animals. Domestic Animal Endocrinology, 12(3), 223245. doi: 10.1016/0739-7240(95)00021-6 CrossRefGoogle ScholarPubMed
Spicer, L. J. and Stewart, R. E. (1996). Interactions among basic fibroblast growth factor, epidermal growth factor, insulin, and insulin-like growth factor-I (IGF-I) on cell numbers and steroidogenesis of bovine thecal cells: Role of IGF-I receptors. Biology of Reproduction, 54(1), 255263. doi: 10.1095/biolreprod54.1.255 CrossRefGoogle ScholarPubMed
Sun, Y., Wang, W., Guo, Y., Zheng, B., Li, H., Chen, J. and Zhang, W. (2019). High copper levels in follicular fluid affect follicle development in polycystic ovary syndrome patients: Population-based and in vitro studies. Toxicology and Applied Pharmacology, 365, 101111. doi: 10.1016/j.taap.2019.01.008 CrossRefGoogle ScholarPubMed
Tabatabaei, S. and Mamoei, M. (2011). Biochemical composition of blood plasma and follicular fluid in relation to follicular size in buffalo. Comparative Clinical Pathology, 20(5), 441445. doi: 10.1007/s00580-010-1014-5 CrossRefGoogle Scholar
Teshome, E., Kebede, A., Abdela, N. and Ahmed, W. M. (2016). Ovarian cyst and its economic impact in dairy farms: A review. Global Veterinaria, 16, 461471.Google Scholar
Thomas, F. H., Leask, R., Srsen, V., Riley, S. C., Spears, N. and Telfer, E. E. (2001). Effect of ascorbic acid on health and morphology of bovine preantral follicles during long-term culture. Reproduction, 122(3), 487495. doi: 10.1530/rep.0.1220487 CrossRefGoogle ScholarPubMed
Valko, M., Morris, H. and Cronin, M. T. D. (2005). Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12(10), 11611208. doi: 10.2174/0929867053764635 CrossRefGoogle ScholarPubMed
Vanholder, T., Opsomer, G. and de Kruif, A. (2006). Aetiology and pathogenesis of cystic ovarian follicles in dairy cattle: A review. Reproduction, Nutrition, Development, 46(2), 105119. doi: 10.1051/rnd:2006003 CrossRefGoogle ScholarPubMed
Walters, K. A., Binnie, J. P., Campbell, B. K., Armstrong, D. G. and Telfer, E. E. (2006). The effects of IGF-I on bovine follicle development and IGFBP-2 expression are dose and stage dependent. Reproduction, 131(3), 515523. doi: 10.1530/rep.1.00682 CrossRefGoogle ScholarPubMed
Wehrman, M. E., Welsh, T. H. and Williams, G. L. (1991). Diet-induced hyperlipidemia in cattle modifies the intrafollicular cholesterol environment, modulates ovarian follicular dynamics, and hastens the onset of postpartum luteal activity. Biology of Reproduction, 45(3), 514522. doi: 10.1095/biolreprod45.3.514 CrossRefGoogle ScholarPubMed
Whitlock, B. K., Daniel, J. A., Wilborn, R. R., Maxwell, H. S., Steele, B. P. and Sartin, J. L. (2011). Effect of kisspeptin on regulation of growth hormone and luteinizing hormone in lactating dairy cows. Journal of Animal Science and Biotechnology, 2, 131140.Google Scholar
Yeo, S. H. and Colledge, W. H. (2018). The role of Kiss1 neurons as integrators of endocrine, metabolic, and environmental factors in the hypothalamic-pituitary-gonadal axis. Frontiers in Endocrinology, 9, 188. doi: 10.3389/fendo.2018.00188 CrossRefGoogle ScholarPubMed
Yimer, N., Haron, A. W. and Yusoff, R. (2018). Determination of ovarian cysts in cattle with poor reproductive performance using ultrasound and plasma progesterone profile. Veterinary Medicine – Open Journal, 3(1), 19. doi: 10.17140/VMOJ-3-126 CrossRefGoogle Scholar
Youngquist, R. S. and Threlfall, W. R. (2007). Ovarian follicular cysts. Current therapy in large animal theriogenology (pp. 379383). Saunders Elsevier.Google Scholar
Yousefdoost, S., Samadi, F., Moghaddam, G., Hassani, S. and Jafari, A. Y. (2012). A comparison of hormonal, metabolite and mineral profiles between Holstein cows with and without ovarian cysts. International Journal of Agricultural Sciences, 12, 11071115.Google Scholar
Zannoni, V., Lynch, M., Goldstein, S. and Sato, P. (1974). A rapid micromethod for the determination of ascorbic acid in plasma and tissues. Biochemical Medicine, 11(1), 4148. doi: 10.1016/0006-2944(74)90093-3 CrossRefGoogle ScholarPubMed
Ziaee, E. (2009). Evaluation of estrogen, insulin and some blood metabolites, and elements effects on ovarian cysts in an Azar-negin Dasht dairy cattle farm [MSc Thesis]. University of Tabriz.Google Scholar