Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-29T09:39:24.678Z Has data issue: false hasContentIssue false

Evaluation of sperm and hormonal assessments in Wagyu, Nellore, and Angus bulls

Published online by Cambridge University Press:  26 July 2023

A. R. Moura
Affiliation:
Center for Natural and Human Sciences, Federal University of ABC, Santo André, Sao Paulo, Brazil
A. R. Santos Jr
Affiliation:
Center for Natural and Human Sciences, Federal University of ABC, Santo André, Sao Paulo, Brazil
J. D. A. Losano
Affiliation:
Department of Animal Sciences, University of Florida, USA Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
A. F. P. Siqueira
Affiliation:
Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
T. R. S. Hamilton
Affiliation:
Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
R. Zanella
Affiliation:
Escola de Ciências Agrárias Inovação e Negócios, Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil Programa de Pós Graduação em BioExperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
K. C. Caires
Affiliation:
Department of Human Nutrition, Food and Animal Sciences, University of Hawaii, Manoa, Hawaii, USA
R. Simões*
Affiliation:
Center for Natural and Human Sciences, Federal University of ABC, Santo André, Sao Paulo, Brazil
*
Corresponding author: Renata Simões; Email: renata.simoes@ufabc.edu.br

Summary

Wagyu bulls are known to have a highly exacerbated libido, as shown by the intense sexual interest of young calves. Therefore we believe that Wagyu male animals have specialized Sertoli and Leydig cells that are directly involved with the sexual precocity in this breed as mature bulls have a small scrotal circumference. This study aimed to evaluate whether there were differences in the hormone and sperm characteristics of Wagyu bulls compared with the same characteristics of subspecies Bos indicus and Bos taurus sires. Frozen–thawed semen from Wagyu, Nellore, and Angus sires were analyzed for sperm kinetics (computer-assisted sperm analysis), plasma membrane integrity, chromatin integrity, acrosome status, mitochondrial activity, lipid peroxidation and hormone [luteinizing hormone (LH) and testosterone] serum concentration. The results showed that Wagyu had lower total motility and an increased number of sperm with no motility when compared with Nellore and Angus bulls. Wagyu breed did not differ from those breeds when considering plasma and acrosome membranes integrity, mitochondrial potential, chromatin resistance, sperm lipid peroxidation or hormone (LH and testosterone) concentrations. We concluded that Wagyu sires had lower total motility when compared with Nellore and Angus bulls. Wagyu breed did not differ from these breeds when considering plasma and acrosome membranes integrity, mitochondrial potential, chromatin resistance, sperm lipid peroxidation, or hormone (LH and testosterone) concentrations.

Type
Research Article
Copyright
© Federal University of the ABC and the Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ABIEC. (2021). Perfil da Pecuária no Brasil: 2021 (Associação Brasileira das Indústrias Exportadoras de Carnes, Brasília, DF, 2021). https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-de-noticias/releases/31722-ppm-2020-rebanho-bovino-cresce-1–5-e-chega-a-218–2-milhoes-de-cabecas. Retrieved 3/8/2022Google Scholar
Agarwal, A. and SenGupta, P. (2020). Oxidative stress and its association with male infertility. doi: 10.1007/978-3-030-32300-4_6CrossRefGoogle Scholar
Agarwal, A., Makker, K. and Sharma, R. (2008). Clinical relevance of oxidative stress in male factor infertility: An update. American Journal of Reproductive Immunology, 59(1), 211. doi: 10.1111/j.1600-0897.2007.00559.x CrossRefGoogle ScholarPubMed
Alyethodi, R. R., Sirohi, A. S., Karthik, S., Tyagi, S., Perumal, P., Singh, U., Sharma, A. and Kundu, A. (2021). Role of seminal MDA, ROS, and antioxidants in cryopreservation and their kinetics under the influence of ejaculatory abstinence in bovine semen. Cryobiology, 98, 187193. doi: 10.1016/j.cryobiol.2020.11.002 CrossRefGoogle ScholarPubMed
Amann, R. P. and Waberski, D. (2014). Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology, 81(1), 517.e1. doi: 10.1016/j.theriogenology.2013.09.004 CrossRefGoogle ScholarPubMed
Amaral, A., Lourenço, B., Marques, M. and Ramalho-Santos, J. (2013). Mitochondria functionality and sperm quality. Reproduction, 146(5), R163R174. doi: 10.1530/REP-13-0178 CrossRefGoogle ScholarPubMed
Amorim, L. S., Kawamoto, T. S., Torres, C. A. A., Guimarães, J. D., Silva Filho, J. M., Oliveira, M. M. N. F., Carvalho, G. R. and Fonseca, J. F. (2015). Influência do Hormônio do Crescimento na concentração de testosterona plasmática e nas características seminais de touros jovens e adultos da raça Nelore. [Influence of growth hormone on plasma testosterone concentration and seminal characteristics of young and adult Nellore bulls.] Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 67(1), 714. doi: 10.1590/1678-7189 CrossRefGoogle Scholar
Anand-Ivell, R., Byrne, C. J., Arnecke, J., Fair, S., Lonergan, P., Kenny, D. A. and Ivell, R. (2019). Prepubertal nutrition alters Leydig cell functional capacity and timing of puberty. PLOS ONE, 14(11), e0225465. doi: 10.1371/journal.pone.0225465 CrossRefGoogle ScholarPubMed
Bernecic, N. C., Donnellan, E., O’Callaghan, E., Kupisiewicz, K., O’Meara, C., Weldon, K., Lonergan, P., Kenny, D. A. and Fair, S. (2021). Comprehensive functional analysis reveals that acrosome integrity and viability are key variables distinguishing artificial insemination bulls of varying fertility. Journal of Dairy Science, 104(10), 1122611241. doi: 10.3168/jds.2021-20319 CrossRefGoogle ScholarPubMed
Bolt, D. J. and Rollins, R. (1983). Development and application of a radioimmunoassay for bovine follicle-stimulating hormone. Journal of Animal Science, 56(1), 146154. doi: 10.2527/jas1983.561146x CrossRefGoogle ScholarPubMed
Bolt, D. J., Scott, V. and Kiracofe, G. H. (1990). Plasma LH and FSH after estradiol, norgestomet and Gn-RH treatment in ovariectomized beef heifers. Animal Reproduction Science, 23(4), 263271. doi: 10.1016/0378-4320(90)90040-M CrossRefGoogle Scholar
Brazil, C., Swan, S. H., Tollner, C. R., Treece, C., Drobnis, E. Z., Wang, C., Redmon, J. B., Overstreet, J. W. and Study for Future Families Research Group. (2004). Quality control of laboratory methods for semen evaluation in a multicenter research study. Journal of Andrology, 25(4), 645656. doi: 10.1002/j.1939-4640.2004.tb02836.x CrossRefGoogle Scholar
Brito, L. F. C. (2021). Sexual development and puberty in bulls. In: Hopper, R.M. (ed.) Bovine Reproduction. John Wiley and Sons Inc., pp. 5878. doi: 10.1002/9781119602484.ch6 CrossRefGoogle Scholar
Brito, L. F. C., Silva, A. E., Unanian, M. M., Dode, M. A., Barbosa, R. T. and Kastelic, J. P. (2004). Sexual development in early- and late-maturing Bos indicus and Bos indicus × Bos taurus crossbred bulls in Brazil. Theriogenology, 62(7), 11981217. doi: 10.1016/j.theriogenology.2004.01.006 CrossRefGoogle ScholarPubMed
Brito, L. F. C., Barth, A. D., Wilde, R. E. and Kastelic, J. P. (2012). Effect of growth rate from 6 to 16 months of age on sexual development and reproductive function in beef bulls. Theriogenology, 77(7), 13981405. doi: 10.1016/j.theriogenology.2011.11.003 CrossRefGoogle ScholarPubMed
Casas, E., Lunstra, D. D., Cundiff, L. V. and Ford, J. J. (2007). Growth and pubertal development of F1 bulls from Hereford, Angus, Norwegian Red, Swedish Red and White, Friesian, and Wagyu sires. Journal of Animal Science, 85(11), 29042909. doi: 10.2527/jas.2007-0260 CrossRefGoogle ScholarPubMed
Castiglioni, V. C., Siqueira, A. F. P., Bicudo, L. C., de Almeida, T. G., Hamilton, T. R. D. S., de Castro, L. S., Mendes, C. M., Nichi, M., Losano, J. D. A., Visitin, J. A. and Assumpção, M. E. O. D. Á. (2021). Lipid peroxidation in bull semen influences sperm traits and oxidative potential of Percoll®-selected sperm. Zygote, 29(6), 476483. doi: 10.1017/S0967199421000228 CrossRefGoogle ScholarPubMed
Chacur, M. G. M., Mizusaki, K. T., Filho, L. R. A. G., Oba, E. & Ramos, A. A. (2013). Seasonal effects on semen and testosterone in Zebu and taurine bulls. Acta Scientiae Veterinariae, 41(1), 1110.Google Scholar
Connolly, S., Dona, A., Hamblin, D., D’Occhio, M. J. and González, L. A. (2020). Changes in the blood metabolome of Wagyu crossbred steers with time in the feedlot and relationships with marbling. Scientific Reports, 10(1), 18987. doi: 10.1038/s41598-020-76101-6 CrossRefGoogle ScholarPubMed
de Assis, P. M., Castro, L. S., Siqueira, A. F., Delgado, Jde C., Hamilton, T. R., Goissis, M. D., Mendes, C. M., Nichi, M., Visintin, J. A. and Assumpção, M. E. (2015). System for evaluation of oxidative stress on in-vitro-produced bovine embryos. Reproductive Biomedicine Online, 31(4), 577580. doi: 10.1016/j.rbmo.2015.06.014 CrossRefGoogle ScholarPubMed
de Castro, L. S., de Assis, P. M., Siqueira, A. F., Hamilton, T. R., Mendes, C. M., Losano, J. D., Nichi, M., Visintin, J. A. and Assumpção, M. E. (2016). Sperm oxidative stress is detrimental to embryo development: A dose-dependent study model and a new and more sensitive oxidative status evaluation. Oxidative Medicine and Cellular Longevity, 2016, 8213071. doi: 10.1155/2016/8213071 CrossRefGoogle Scholar
De Nadai Fernandes, E. A. N., Sarriés, G. A., Bacchi, M. A., Mazola, Y. T., Gonzaga, C. L. and Sarriés, S. R. V. (2020). Trace elements and machine learning for Brazilian beef traceability. Food Chemistry, 333, 127462. doi: 10.1016/j.foodchem.2020.127462 CrossRefGoogle ScholarPubMed
Dogan, S., Vargovic, P., Oliveira, R., Belser, L. E., Kaya, A., Moura, A., Sutovsky, P., Parrish, J., Topper, E. and Memili, E. (2015). Sperm protamine-status correlates to the fertility of breeding bulls. Biology of Reproduction, 92(4), 92. doi: 10.1095/biolreprod.114.124255 CrossRefGoogle Scholar
Dutta, S., Henkel, R., Sengupta, P. and Agarwal, A. (2020). Physiological role of ROS in sperm function. In: Parekattil, S., Esteves, S. & Agarwal, A. (eds) Male Infertility. Springer, Cham. doi: 10.1007/978-3-030-32300-4_27 Google ScholarPubMed
Facioli, F. L., De Marchi, F., Marques, M. G., Michelon, P. R. P., Zanella, E. L., Caires, K. C., Reeves, J. J. and Zanella, R. (2020). The outcome and economic viability of embryo production using IVF and SOV techniques in the Wagyu breed of cattle. Veterinary Sciences, 7(2), 58. doi: 10.3390/vetsci7020058 CrossRefGoogle ScholarPubMed
Fernandez-Novo, A., Santos-Lopez, S., Barrajon-Masa, C., Mozas, P., de Mercado, E., Caceres, E., Garrafa, A., Gonzalez-Martin, J. V., Perez-Villalobos, N., Oliet, A., Astiz, S. and Perez-Garnelo, S. S. (2021). Effect of extender, storage time and temperature on kinetic parameters (CASA) on bull semen samples. Biology, 10(8), 806. doi: 10.3390/biology10080806 CrossRefGoogle ScholarPubMed
Fields, M. J., Hentges, J. F. and Cornelisse, K. W. (1982). Aspects of the sexual development of Brahman versus Angus bulls in Florida. Theriogenology, 18(1), 1731. doi: 10.1016/0093-691x(82)90045-0 CrossRefGoogle ScholarPubMed
Gallo, A., Esposito, M. C., Tosti, E. and Boni, R. (2021). Sperm motility, oxidative status, and mitochondrial activity: Exploring correlation in different species. Antioxidants, 10(7), 1131. doi: 10.3390/antiox10071131 CrossRefGoogle ScholarPubMed
Goovaerts, I. G. F., Hoflack, G. G., Van Soom, A., Dewulf, J., Nichi, M., de Kruif, A. and Bols, P. E. (2006). Evaluation of epididymal semen quality using the Hamilton-Thorne analyser indicates variation between the two caudae epididymides of the same bull. Theriogenology, 66(2), 323330. doi: 10.1016/j.theriogenology.2005.11.018 CrossRefGoogle ScholarPubMed
Hoflack, G., Opsomer, G., Rijsselaere, T., Van Soom, A., Maes, D., de Kruif, A. and Duchateau, L. (2007). Comparison of computer-assisted sperm motility analysis parameters in semen from Belgian Blue and Holstein-Friesian bulls. Reproduction in Domestic Animals, 42(2), 153161. doi: 10.1111/j.1439-0531.2006.00745.x CrossRefGoogle ScholarPubMed
IBGE, censo agropecuário 2017. (2017). IBGE – Censo agro. https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=73096. Retrieved 11/5/2022.Google Scholar
Kathiravan, P., Kalatharan, J., Edwin, M. J. and Veerapandian, C. (2008). Computer automated motion analysis of crossbred bull spermatozoa and its relationship with in vitro fertility in zona-free hamster oocytes. Animal Reproduction Science, 104(1), 917. doi: 10.1016/j.anireprosci.2007.01.002 CrossRefGoogle ScholarPubMed
Kathiravan, P., Kalatharan, J., Karthikeya, G., Rengarajan, K. and Kadirvel, G. (2011). Objective sperm motion analysis to assess dairy bull fertility using computer-aided system – A review. Reproduction in Domestic Animals, 46(1), 165172. doi: 10.1111/j.1439-0531.2010.01603.x CrossRefGoogle ScholarPubMed
Kowalczyk, A., Gałęska, E., Czerniawska-Piątkowska, E., Szul, A. and Hebda, L. (2021). The impact of regular sperm donation on bull’s seminal plasma hormonal profile and phantom response. Scientific Reports, 11(1), 11116. doi: 10.1038/s41598-021-90630-8 CrossRefGoogle ScholarPubMed
Kumaresan, A., Johannisson, A., Al-Essawe, E. M. and Morrell, J. M. (2017). Sperm viability, reactive oxygen species, and DNA fragmentation index combined can discriminate between above- and below-average fertility bulls. Journal of Dairy Science, 100(7), 58245836. doi: 10.3168/jds.2016-12484 CrossRefGoogle ScholarPubMed
Kunz, G., Beil, D., Deiniger, H., Einspanier, A., Mall, G. and Leyendecker, G. (1997). The uterine peristaltic pump: Normal and impeded sperm transport within the female genital tract. Advances in Experimental Medicine and Biology, 424, 267277. doi: 10.1007/978-1-4615-5913-9_49 CrossRefGoogle ScholarPubMed
Ladeira, M. M., Schoonmaker, J. P., Swanson, K. C., Duckett, S. K., Gionbelli, M. P., Rodrigues, L. M. and Teixeira, P. D. (2018). Review: Nutrigenomics of marbling and fatty acid profile in ruminant meat. Animal: An International Journal of Animal Bioscience, 12(s2), s282s294. doi: 10.1017/S1751731118001933 CrossRefGoogle ScholarPubMed
Leite, R. F., de Agostini Losano, J. D., de Souza Ramos Angrimani, D., Sousa, R. G. B., de Miranda Alves, Á., Cavallin, M. D., Kawai, G. K. V., Cortada, C. N. M., Zuge, R. M. and Nichi, M. (2021). Reproductive parameters of Bos taurus and Bos indicus bulls during different seasons in tropical conditions: Focus on an alternative approach to testicular assessments using ultrasonography. Animal Reproduction Science, 225, 106668. doi: 10.1016/j.anireprosci.2020.106668 CrossRefGoogle Scholar
Leite, R. F., Losano, J. D. A., Kawai, G. K. V., Rui, B. R., Nagai, K. K., Castiglioni, V. C., Siqueira, A. F. P., D’Avila Assumpção, M. E. O., Baruselli, P. S. and Nichi, M. (2022). Sperm function and oxidative status: Effect on fertility in Bos taurus and Bos indicus bulls when semen is used for fixed-time artificial insemination. Animal Reproduction Science, 237, 106922. doi: 10.1016/j.anireprosci.2022.106922 CrossRefGoogle ScholarPubMed
Malama, E., Zeron, Y., Janett, F., Siuda, M., Roth, Z. and Bollwein, H. (2017). Use of computer-assisted sperm analysis and flow cytometry to detect seasonal variations of bovine semen quality. Theriogenology, 87, 7990. doi: 10.1016/j.theriogenology.2016.08.002 CrossRefGoogle ScholarPubMed
Miller, D. J. (2018). Review: The epic journey of sperm through the female reproductive tract. Animal: An International Journal of Animal Bioscience, 12(s1), s110s120. doi: 10.1017/S1751731118000526 CrossRefGoogle ScholarPubMed
Morrell, J. M., Valeanu, A. S., Lundeheim, N. and Johannisson, A. (2018). Sperm quality in frozen beef and dairy bull semen. Acta Veterinaria Scandinavica, 60(1), 41. doi: 10.1186/s13028-018-0396-2 CrossRefGoogle ScholarPubMed
Nagy, Á., Polichronopoulos, T., Gáspárdy, A., Solti, L. and Cseh, S. (2015). Correlation between bull fertility and sperm cell velocity parameters generated by computer-assisted semen analysis. Acta Veterinaria Hungarica, 63(3), 370381. doi: 10.1556/004.2015.035 CrossRefGoogle ScholarPubMed
Narud, B., Klinkenberg, G., Khezri, A., Zeremichael, T. T., Stenseth, E. B., Nordborg, A., Haukaas, T. H., Morrell, J. M., Heringstad, B., Myromslien, F. D. and Kommisrud, E. (2020). Differences in sperm functionality and intracellular metabolites in Norwegian Red bulls of contrasting fertility. Theriogenology, 157, 2432. doi: 10.1016/j.theriogenology.2020.07.005 CrossRefGoogle ScholarPubMed
Nichi, M., Bols, P. E., Züge, R. M., Barnabe, V. H., Goovaerts, I. G., Barnabe, R. C. and Cortada, C. N. (2006). Seasonal variation in semen quality in Bos indicus and Bos taurus bulls raised under tropical conditions. Theriogenology, 66(4), 822828. doi: 10.1016/j.theriogenology.2006.01.056 CrossRefGoogle ScholarPubMed
Nogueira, G. P. (2004). Puberty in South American Bos indicus (Zebu) cattle. Animal Reproduction Science, 82–83, 361372. doi: 10.1016/j.anireprosci.2004.04.007 CrossRefGoogle ScholarPubMed
Ohkawa, H., Ohishi, N. and Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351358. doi: 10.1016/0003-2697(79)90738-3 CrossRefGoogle ScholarPubMed
Oliveira, L. Z., de Arruda, R. P., de Andrade, A. F., Celeghini, E. C., Reeb, P. D., Martins, J. P., dos Santos, R. M., Beletti, M. E., Peres, R. F., Monteiro, F. M. and Hossepian de Lima, V. F. (2013). Assessment of in vitro sperm characteristics and their importance in the prediction of conception rate in a bovine timed-AI program. Animal Reproduction Science, 137(3–4), 145155. doi: 10.1016/j.anireprosci.2013.01.010 CrossRefGoogle Scholar
Oliveira, B. M., Arruda, R. P., Thomé, H. E., Maturana Filho, M., Oliveira, G., Guimarães, C., Nichi, M., Silva, L. A. and Celeghini, E. C. (2014). Fertility and uterine hemodynamic in cows after artificial insemination with semen assessed by fluorescent probes. Theriogenology, 82(5), 767772. doi: 10.1016/j.theriogenology.2014.06.007 CrossRefGoogle ScholarPubMed
O’Meara, C., Henrotte, E., Kupisiewicz, K., Latour, C., Broekhuijse, M., Camus, A., Gavin-Plagne, L. and Sellem, E. (2022). The effect of adjusting settings within a computer-assisted sperm analysis (CASA) system on bovine sperm motility and morphology results. Animal Reproduction, 19(1), e20210077. doi: 10.1590/1984-3143-AR2021-0077 CrossRefGoogle ScholarPubMed
Parrish, J. J., Susko-Parrish, J., Winer, M. A. and First, N. L. (1988). Capacitation of bovine sperm by heparin. Biology of Reproduction, 38(5), 11711180. doi: 10.1095/biolreprod38.5.1171 CrossRefGoogle ScholarPubMed
Perumal, P., Srivastava, S. K., Ghosh, S. K. and Baruah, K. K. (2014). Computer-assisted sperm analysis of freezable and nonfreezable Mithun (Bos frontalis) semen. Journal of Animals, 2014, 16. doi: 10.1155/2014/675031 Google Scholar
Pintus, E. and Ros-Santaella, J. L. (2021). Impact of oxidative stress on male reproduction in domestic and wild animals. Antioxidants, 10(7), 1154. doi: 10.3390/antiox10071154 CrossRefGoogle ScholarPubMed
Radunz, A. E., Loerch, S. C., Lowe, G. D., Fluharty, F. L. and Zerby, H. N. (2009). Effect of Wagyu-versus Angus-sired calves on feedlot performance, carcass characteristics, and tenderness. Journal of Animal Science, 87(9), 29712976. doi: 10.2527/jas.2009-1914 CrossRefGoogle ScholarPubMed
Ratnawati, D. and Luthfi, M. (2020). Comparative study of sperms motility analysis with CASA by using leja and microscope slide. Jurnal Ilmu-Ilmu Peternakan, 30(2), 115122. doi: 10.21776/ub.jiip.2020.030.02.03 CrossRefGoogle Scholar
Reis, L. S. L. S., Ramos, A. A., Camargos, A. S. and Oba, E. (2016). Integrity of the plasma membrane, the acrossomal membrane, and the mitochondrial membrane potential of sperm in Nelore bulls from puberty to sexual maturity. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 68(3), 620628. doi: 10.1590/1678-4162-8748 CrossRefGoogle Scholar
Rezende-de-Souza, J. H., Cardello, F. A. B., de Paula, A. P. M., Ribeiro, F. A., Calkins, C. R. and Pflanzer, S. B. (2021). Profile of producers and production of dry-aged beef in Brazil. Foods, 10(10), 2447. doi: 10.3390/foods10102447 CrossRefGoogle ScholarPubMed
Ribas-Maynou, J., Yeste, M. and Salas-Huetos, A. (2020). The relationship between sperm oxidative stress alterations and IVF/ICSI outcomes: A systematic review from nonhuman mammals. Biology, 9(7), 178. doi: 10.3390/biology9070178 CrossRefGoogle ScholarPubMed
Robayo, I., Montenegro, V., Valdés, C. and Cox, J. F. (2008). CASA assessment of kinematic parameters of ram spermatozoa and their relationship to migration efficiency in ruminant cervical mucus. Reproduction in Domestic Animals, 43(4), 393399. doi: 10.1111/j.1439-0531.2007.00920.x CrossRefGoogle ScholarPubMed
Rodrigues, R. T. S., Chizzotti, M. L., Vital, C. E., Baracat-Pereira, M. C., Barros, E., Busato, K. C., Gomes, R. A., Ladeira, M. M. and Martins, T. D. (2017). Differences in beef quality between Angus (Bos taurus taurus) and Nellore (Bos taurus indicus) cattle through a proteomic and phosphoproteomic approach. PLOS ONE, 12(1), e0170294. doi: 10.1371/journal.pone.0170294 CrossRefGoogle ScholarPubMed
Rodrigues, N. N., Rossi, G. F., Vrisman, D. P., Taira, A. R., Souza, L. L., Zorzetto, M. F., Bastos, N. M., de Paz, C. C. P., de Lima, V. F. M. H., Monteiro, F. M. and Franco Oliveira, M. E. (2020). Ultrasonographic characteristics of the testes, epididymis and accessory sex glands and arterial spectral índices in peri- and post-pubertal Nelore and Caracu bulls. Animal Reproduction Science, 212, 106235. doi: 10.1016/j.anireprosci.2019.106235 CrossRefGoogle ScholarPubMed
Romanello, N., de Brito Lourenço Junior, J., Barioni Junior, W., Brandão, F. Z., Marcondes, C. R., Pezzopane, J. R. M., de Andrade Pantoja, M. H., Botta, D., Giro, A., Moura, A. B. B., do Nascimento Barreto, A. and Garcia, A. R. (2018). Thermoregulatory responses and reproductive traits in composite beef bulls raised in a tropical climate. International Journal of Biometeorology, 62(9), 15751586. doi: 10.1007/s00484-018-1557-8 CrossRefGoogle Scholar
Sansegundo, E., Tourmente, M. and Roldan, E. R. S. (2022). Energy metabolism and hyperactivation of spermatozoa from three mouse species under capacitating conditions. Cells, 11(2), 220. doi: 10.3390/cells11020220 CrossRefGoogle ScholarPubMed
Santos, M. D., Torres, C. A. A., Ruas, J. R. M., Guimarães, J. D. and Silva Filho, J. M. (2004). Reproductive potential of Nelore bulls submitted to different bull:cow proportion. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 56(4), 497503. doi: 10.1590/S0102-09352004000400011 CrossRefGoogle Scholar
Saraf, K. K., Kumaresan, A., Sinha, M. K. and Datta, T. K. (2021). Spermatozoal transcripts associated with oxidative stress and mitochondrial membrane potential differ between high- and low-fertile crossbred bulls. Andrologia, 53(5), e14029. doi: 10.1111/and.14029 CrossRefGoogle ScholarPubMed
Shi, Q. X. and Roldan, E. R. S. (1995). Bicarbonate/CO2 is not required for zona pellucida- or progesterone-induced acrosomal exocytosis of mouse spermatozoa but is essential for capacitation. Biology of Reproduction, 52(3), 540546. doi: 10.1095/biolreprod52.3.540 CrossRefGoogle ScholarPubMed
Silva, M. R., Pedrosa, V. B., Silva, J. C., Eler, J. P., Guimarães, J. D. and Albuquerque, L. G. (2011). Testicular traits as selection criteria for young Nellore bulls. Journal of Animal Science, 89(7), 20612067. doi: 10.2527/jas.2010-3525 CrossRefGoogle ScholarPubMed
Simões, R., Feitosa, W. B., Siqueira, A. F., Nichi, M., Paula-Lopes, F. F., Marques, M. G., Peres, M. A., Barnabe, V. H., Visintin, J. A. and Assumpção, M. E. (2013). Influence of bovine sperm DNA fragmentation and oxidative stress on early embryo in vitro development outcome. Reproduction, 146(5), 433441. doi: 10.1530/REP-13-0123 CrossRefGoogle ScholarPubMed
Singh, A. K., Kumar, A. and Bisla, A. (2021). Computer-assisted sperm analysis (CASA) in veterinary science: A review. Indian Journal of Animal Sciences, 91(6), 419429. doi: 10.56093/ijans.v91i6.115435 CrossRefGoogle Scholar
Siqueira, A. F. P., de Castro, L. S., de Assis, P. M., Bicudo, L. C., Mendes, C. M., Nichi, M., Visintin, J. A. and Assumpção, M. E. O. D. (2018). Sperm traits on in vitro production (IVP) of bovine embryos: Too much of anything is good for nothing. PLOS ONE, 13(7), e0200273. doi: 10.1371/journal.pone.0200273 CrossRefGoogle Scholar
Sosa, J. M., Senger, P. L. and Reeves, J. J. (2002). Evaluation of American Wagyu sires for scrotal circumference by age and body weight. Journal of Animal Science, 80(1), 1922. doi: 10.2527/2002.80119x CrossRefGoogle ScholarPubMed
Souza, L. W. O., Andrade, A. F. C., Celeghini, E. C. C., Negrão, J. A. and Arruda, R. Pd. (2011). Correlation between sperm characteristics and testosterone in bovine seminal plasma by direct radioimmunoassay. Revista Brasileira de Zootecnia, 40(12), 27212724. doi: 10.1590/S1516-35982011001200015 CrossRefGoogle Scholar
Tartaglione, C. M. and Ritta, M. N. (2004). Prognostic value of spermatological parameters as predictors of in vitro fertility of frozen–thawed bull semen. Theriogenology, 62(7), 12451252. doi: 10.1016/j.theriogenology.2004.01.012 CrossRefGoogle ScholarPubMed
Tatman, S. R., Chase, C. C., Wilson, T. W., Neuendorff, D. A., Lewis, A. W., Brown, C. G. & Randel, R. D. (2022). Comparison of reproductive development of recently introduced breeds to Angus and Brahman bulls. https://overton.tamu.edu/files/2022/03/article148.pdf. Retrieved 13/5/2022Google Scholar
Teerds, K. J. and Huhtaniemi, I. T. (2015). Morphological and functional maturation of Leydig cells: From rodent models to primates. Human Reproduction Update, 21(3), 310328. doi: 10.1093/humupd/dmv008 CrossRefGoogle ScholarPubMed
Teixeira, V. A., Coelho, S. G., Tomich, T. R., Pacheco Rodrigues, J. P., Camρos, M. M., Machado, F. S., Gualberto Barbosa da Silva, M. V., Monteiro, G. A. and Ribeiro Pereira, L. G. (2019). Reproductive characteristics of bulls from two breed compositions and their correlations with infrared thermography. Journal of Thermal Biology, 85, 102407. doi: 10.1016/j.jtherbio.2019.102407 CrossRefGoogle ScholarPubMed
Ugur, M. R., Saber Abdelrahman, A., Evans, H. C., Gilmore, A. A., Hitit, M., Arifiantini, R. I., Purwantara, B., Kaya, A. and Memili, E. (2019). Advances in cryopreservation of bull sperm. Frontiers in Veterinary Science, 6, 268. doi: 10.3389/fvets.2019.00268 CrossRefGoogle ScholarPubMed
Upadhyay, V. R., Ramesh, V., Dewry, R. K., Yadav, D. K. and Ponraj, P. (2022). Bimodal interplay of reactive oxygen and nitrogen species in physiology and pathophysiology of bovine sperm function. Theriogenology, 187, 8294. doi: 10.1016/j.theriogenology.2022.04.024 CrossRefGoogle ScholarPubMed
Utt, M. D. (2016). Prediction of bull fertility. Animal Reproduction Science, 169, 3744. doi: 10.1016/j.anireprosci.2015.12.011 CrossRefGoogle ScholarPubMed
Valverde, A., Barquero, V. and Soler, C. (2020). The application of computer-assisted semen analysis (CASA) technology to optimise semen evaluation. A review. Journal of Animal and Feed Sciences, 29(3), 189198. doi: 10.22358/jafs/127691/2020 CrossRefGoogle Scholar
Yánez-Ortiz, I., Catalán, J., Rodríguez-Gil, J. E., Miró, J. and Yeste, M. (2022). Advances in sperm cryopreservation in farm animals: Cattle, horse, pig and sheep. Animal Reproduction Science, 246, 106904. doi: 10.1016/j.anireprosci.2021.106904 CrossRefGoogle ScholarPubMed
Zu Ermgassen, E. K. H. J., Godar, J., Lathuillière, M. J., Löfgren, P., Gardner, T., Vasconcelos, A. and Meyfroidt, P. (2020). The origin, supply chain, and deforestation risk of Brazil’s beef exports. Proceedings of the National Academy of Sciences of the United States of America, 117(50), 3177031779. doi: 10.1073/pnas.2003270117 CrossRefGoogle ScholarPubMed
Supplementary material: File

Moura et al. supplementary material

Figures S1-S4

Download Moura et al. supplementary material(File)
File 361.1 KB