Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-04T15:57:46.069Z Has data issue: false hasContentIssue false

Influence of granulosa cells and of different somatic cell types on mammalian oocyte development in vitro

Published online by Cambridge University Press:  26 September 2008

Sadra Cecconi*
Affiliation:
Department of Biological Sciences and Technologies, University L'Aquila, L'Aquila, Italy.
Rosella Colonna
Affiliation:
Department of Biological Sciences and Technologies, University L'Aquila, L'Aquila, Italy.
*
S. Cecconi, Department of Biological Sciences and Technologies, University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy. Telephone: +39+862-433459. Fax: +39+862-433433.

Extract

In mammals the ability of an oocyte to become fertilised is the result of a complex process occurring within the ovarian follicle which depends on the stagespecific expression of oocyte genes and the presence of granulosa cells (for a review see Buccione et al., 1990a). The coordinated development of germinal and somatic components of the follicle is regulated by two principal systems of interaction, based on the presence of gap junctions and on the production of paracrine factors. Gap junctions link granulosa cells to each other and to the oocyte (Anderson & Albertini, 1976), and represent a major route for the transfer of small molecules involved in oocyte metabolism (for a review see Mangia et al., 1992) and regulation of the arrest and resumption of meiosis (for a review see Eppig, 1993). The production of paracrine factors by granulosa cells has been suggested by the findings that these cells express the production of the Steel locus, the Steel factor (SLF) or kit ligand (KL; Motro et al., 1991; Manova et al., 1993), and that this factor promotes oocyte growth in vitro when used at high concentrations (Packer et al., 1994). Since KL is too large to be transmitted through gap junctions, it must necessarily be released in the extracellular environment before binding to the c-kit receptor present on oocyte membrane (Manova et al., 1990; Horie et al., 1991).

Type
Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, E. & Albertini, D.F..(1976). Gap junctions between the oocytes and companion follicle cells in the mammalian ovary. J. Cell Bid. 71, 680–6.CrossRefGoogle ScholarPubMed
Boland, N.I.,Humpherson, P.G., Leese, H.J. & Gosden, R.G. (1993). Pattern of lactate production and steroidogenesis during growth and maturation of mouse ovarian follicles in vitro. Biol. Reprod. 48, 798806CrossRefGoogle ScholarPubMed
Buccione, R., Cecconi, S., Tatone, C.,Mangia, F. & Colonna, C. (1987) Follicle cell regulation of mammalian oocyte growth. J. Exp. Zool. 242, 351–4.CrossRefGoogle ScholarPubMed
Buccione, R., Schroeder, A.C. & Eppig, J.J. (1990 a). Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol. Reprod. 43, 543–7.CrossRefGoogle ScholarPubMed
Buccione, R., Vanderhyden, B.C., Caron, P.J. & Eppig, J.J. (1990 b). FSH-induced expansion of the mouse cumulus oophorus in vitro is dependent upon a specific factor(s) secreted by the oocyte. Dev. Biol. 138, 1625.CrossRefGoogle ScholarPubMed
Canipari, R., Palombi, F., Riminucci, M. & Mangia, F. (1984). Early programming of maturation competence in mouse oogenesis. Dev. Biol. 102, 519–24.CrossRefGoogle ScholarPubMed
Canipari, R., Epifano, O., Siracusa, C., Salustri, A. (1995). Mouse oocytes inhibit plasminogen activator production by ovarian cumulus and granulosa cells. Dev. Biol. 167, 371–8.CrossRefGoogle ScholarPubMed
Cecconi, S., Rossi, G., De, FeliciColonna, R. (1996 a). Mammalian oocyte growth in vitro is stimulated by soluble factor(s) produced by preantral granulosa cells and by Sertoli cells. Mol. Reprod. Dev. 44, 540–6.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Cecconi, S., D'Aurizio, R. & Colonna, R. (1996 b). Role of antral follicle development and cumulus cells on in vitro fertilization of mouse oocytes. J. Reprod. Fertil. 107, 207–14.CrossRefGoogle ScholarPubMed
Chesnel, F., Wigglesworth, K. & Eppig, J.J. (1994). Acquisition of meiotic competence by denuded mouse oocytes: participation of somatic-cell product(s) and cAMP. Dev. Biol. 161, 285–95.CrossRefGoogle ScholarPubMed
Cran, D.G., Moor, R.M. (1990). Programming the oocyte for fertilization. In Fertilization in Mammals, ed. Bavister, B.D.Cummins, J. & Roldan, E.R.S.,3547.Norwell, Mass.: Serono Symposia.Google ScholarPubMed
Dolci, S., Williams, D.E., Ernst, M.K., Resnick, J.L., Brannan, C.I., Lock, L.F., Lyman, S.D., Boswell, H.S., Donovan, P.J. (1991). Requirement for mast cell growth factor for primordial germ cell survival in culture. Nature. 352, 809–11.CrossRefGoogle ScholarPubMed
Dolci, S., Pesce, M. & De Felici, M. (1993). Combined action of Stern cell factor, leukemia inhibitory factor, and cAMP on in vitro proliferation of mouse primordial germ Cells. Mol. Reprod. Dev. 35, 134–9.CrossRefGoogle Scholar
Eppig, J.J. (1993). Regulation of mammalian oocyte maturation. In The Ovary. Comprehensive Endocrinology, ed. Adashi, E.Y.Leung, P.C.K.. 185208. New York: Raven Press.Google Scholar
Eppig, J.J. (1994 a). Oocyte–somatic cell communication in the ovarian follicles of mammals. Semin. Dev. Biol. 5, 51–9.CrossRefGoogle Scholar
Eppig, J.J. (1994 b). Further reflections on culture systems for the growth of oocytes in vitro. Hum. Reprod. 9, 969–76.CrossRefGoogle ScholarPubMed
Godin, I., Deed, R., Cooke, J., Zsebo, K., Dexter, M. & Wylie, C.C. (1991). Effects of the steel gene product on mouse primordial germ cells in culture. Nature. 352, 807–9.CrossRefGoogle ScholarPubMed
Herlands, R. & Schultz, R.M. (1984). Regulation of mouse oocyte growth: probable nutritional role for intercellular communication between follicle cells and oocytes in oocyte growth. J. Exp. Zool. 229, 317–25.CrossRefGoogle ScholarPubMed
Horie, K., Takakura, K., Taii, S., Narimoto, K.Noda, Y., Nishikawa, S., Nakayama, H., Fujita, J. & Mori, T. (1991). The expression of c-kit protein during oogenesis and early embryonic development. Biol. Reprod. 45, 547–52.CrossRefGoogle ScholarPubMed
Huang, E.J., Manova, K., Packer, A.I., Sanchez, S., Bachvarova, R.F. & Besmer, P. (1993). The murine steel panda mutation affects kit ligand expression and growth of early ovarian follicles. Dev. Blot. 157, 100–9.Google ScholarPubMed
Mangia, F., Bevilacqua, A., Buccione, R., Canipari, R., Cecconi, S., Colonna, R., Curci, A., Fiorenza, M.T. & Tatone, C. (1992). Regulation of oocyte and granulosa cells functions throughout mammalian oogenesis.In Sex Origin and Evolution, ed. Dallai, R., pp. 157–65. Selected Symposia and Monographs UZI6. Modena: Mucchi.Google Scholar
Manova, K., Nocka, K., Besmer, P., Bachvarova, R.F. (1990). Gonadal expression of c-kit encoded at the W locus of the mouse. Development. 110.1057–69.CrossRefGoogle Scholar
Manova, K., Huang, E.J., Angeles, M., De Leon, V., Sanchez, S., Pronovost, S.M., Besmer, P. & Bachvarova, R.F. (1993). The expression pattern of the c-kit ligand in gonads of newborn mice supports a role for the c-kit receptor in oocyte growth and in proliferation of spermatogonia. Dev. Biol. 157, 8599.CrossRefGoogle ScholarPubMed
Motro, B., Van der Kooy, D., Rossant, J., Reith, A. & Bernstein, A. (1991). Contiguous patterns of c-kit and steel expression: analysis of mutations at the W and Sl loci. Development. 113, 613–24.CrossRefGoogle Scholar
Nayudu, P.L. & Osborn, S.M. (1992). Factors influencing the rate of preantral and antral growth of mouse ovarian follicles in vitro. J. Reprod. Fertil. 95, 349–62.CrossRefGoogle ScholarPubMed
Packer, A.I., Hsu, Y.C., Besmer, P. & Bachvarova, R.F. (1994). the ligand of c-kit receptor promotes oocyte growth. Dev. Bid. 161, 194205.CrossRefGoogle ScholarPubMed
Pesce, M., Farrace, M.G., Piacentini, M., Dolci, S. & De Felici, M. (1993). Stem cell factor and leukemia inhibitory factor promote primordial germ cell survival by suppressing programmed cell death (apoptosis). Development. 118, 1089–94.CrossRefGoogle ScholarPubMed
Salustri, A., Yanagishita, M. & Hascall, V.C. (1990). Mouse oocytes regulate hyaluronic acid synthesis and mucification by FSH-stimulated cumulus cells. Dev. Biol. 138, 2632.CrossRefGoogle ScholarPubMed
Schroeder, A.C., Eppig, J.J. (1984). The developmental capacity of mouse oocytes that matured spontaneously in vitro is normal. Dev. Biol. 102, 493–7.CrossRefGoogle Scholar
Spears, N., Boland, N.I., Murray, A.A. & Gosden, R.G. (1994). Mouse oocytes derived from in vitro grown primary ovarian follicles are fertiles are fertile. Hum. Reprod. 9, 527–32.CrossRefGoogle ScholarPubMed
Vanderhyden, B.C. & Armstrong, D.T. (1990). Effects of gonadotropins and granulosa cell secretions on the maturation and fertilization of rat oocytes in vitro. Mol. Reprod. Dev. 26, 337–46.CrossRefGoogle ScholarPubMed
Vanderhyden, B.C.,Telfer, E.E. & Eppig, J.J. (1992). Mouse oocytes promote proliferation of granulosa cells from preantral and antral follicles in vitro. Biol. Reprod. 46, 1196–204.CrossRefGoogle ScholarPubMed
Vanderhyden, B.C., Cohen, J.N. & Morley, P. (1993). Mouse oocytes granulosa cell steroidogenesis. Endocrinology. 133, 423–7.CrossRefGoogle ScholarPubMed
Yanagimachi, R. (1994). Mammalian fertilzation. In The physiology of Reproduction,2nd ed, Knobil, E. & Neill, J.D., pp. 189317.New York: Raven press.Google Scholar