Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T05:58:56.377Z Has data issue: false hasContentIssue false

Several aspects of animal embryo cryopreservation: anti-freeze protein (AFP) as a potential cryoprotectant

Published online by Cambridge University Press:  27 October 2009

A. V. Makarevich*
Affiliation:
Animal Production Research Centre (APRC) Nitra, 95141 Luzianky near Nitra, Slovak Republic. Animal Production Research Centre (APRC) Nitra, Slovak Republic.6
E. Kubovičová
Affiliation:
Animal Production Research Centre (APRC) Nitra, Slovak Republic.6
M. Popelková
Affiliation:
Centre for Assisted Reproduction, Paul Joseph Šafarik University, Košice, Slovak Republic.
D. Fabian
Affiliation:
Institute of Animal Physiology, Slovak Academy of Sciences, Košice, Slovak Republic.
Š. Čikoš
Affiliation:
Institute of Animal Physiology, Slovak Academy of Sciences, Košice, Slovak Republic.
J. Pivko
Affiliation:
Animal Production Research Centre (APRC) Nitra, Slovak Republic.6
P. Chrenek
Affiliation:
Animal Production Research Centre (APRC) Nitra, Slovak Republic.6 Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovak Republic.
*
All correspondence to: A.V. Makarevich. Animal Production Research Centre (APRC) Nitra, 95141 Luzianky near Nitra, Slovak Republic. Tel: +421 37 6546 335. Fax: +421 37 6546 480. e-mail: makarevic@cvzv.sk

Summary

With the development of embryo technologies, such as in vitro fertilization, cloning and transgenesis, cryopreservation of mammalian gametes and embryos has acquired a particular interest. Despite a certain success, various cryopreservation techniques often cause significant morphological and biochemical alterations, which lead to the disruption of cell organelles, cytoskeleton damages, cell death and loss of embryo viability. Ultrastructural studies confirm high sensitivity of the cell membrane and organelle membrane to freezing and thawing. It was found that many substances with low molecular weights have a protective action against cold-induced damage. In this concern, an anti-freeze protein (AFP) and anti-freeze glycoproteins (AFGPs), which occur at extremely high concentrations in fish that live in Arctic waters and protect them against freezing, may be of potential interest for cryostorage of animal embryos at ultra-low temperatures. This mini-review briefly describes several models of AFP/AFGP action to preserve cells against chilling-induced damages and indicates several ways to improve post-thaw developmental potential of the embryo.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, H.J., Sohn, I.P., Kwon, H.C., Jo Do, H., Park, Y.D. & Min, C.K. (2002). Characteristics of the cell membrane fluidity, actin fibers, and mitochondrial dysfunctions of frozen–thawed two-cell mouse embryos. Mol. Reprod. Dev. 61, 466–77.CrossRefGoogle ScholarPubMed
Ali, J. & Shelton, N. (1993). Vitrification of preimplantation stages of mouse embryos. J. Reprod. Fertil. 98, 459–65.CrossRefGoogle ScholarPubMed
Arav, A., Rubinsky, B., Seren, E., Roche, J.F. & Boland, M.P. (1994). The role of thermal hysteresis proteins during cryopreservation of oocytes and embryos. Theriogenology 41, 107–12.CrossRefGoogle Scholar
Asada, M., Ishibashi, S., Ikumi, S. & Fukui, Y. (2002). Effect of polyvinyl alcohol (PVA) concentration during vitrification of in vitro matured bovine oocytes. Theriogenology 58, 1199–208.CrossRefGoogle ScholarPubMed
Baguisi, A., Arav, A., Crosby, T.F., Roche, J.F. & Boland, M.P. (1997). Hypothermic storage of sheep embryos with antifreeze proteins: development in vitro and in vivo. Theriogenology 48, 1017–24.CrossRefGoogle ScholarPubMed
Baguisi, A., Lonergan, P., Overstrom, E. & Boland, M. (1999). Vitrification of bovine embryos: incidence of necrosis and apoptosis. Theriogenology 55, 162.CrossRefGoogle Scholar
Bautista, J.A. & Kanagawa, H. (1998). Current status of vitrification of embryos and oocytes in domestic animals: ethylene glycol as an emerging cryoprotectant of choice. Jpn. J. Vet. Res. 45, 183–91.Google ScholarPubMed
Beebe, L.F., Cameron, R.D., Blackshaw, A.W., Higgins, A. & Nottle, M.B. (2002). Piglets born from centrifuged and vitrified early and peri-hatching blastocysts. Theriogenology 57, 2155–65.CrossRefGoogle Scholar
Berthelot, F., Martinat-Botte, F., Locatelli, A., Perreau, C. & Terqui, M. (2000). Piglets born after vitrification of embryos using the open pulled straw method. Cryobiology 41, 116–24.CrossRefGoogle ScholarPubMed
Cervera, R.P. & Garcia-Ximenez, F. (2003). Vitrification of zona-free rabbit expanded or hatching blastocysts: a possible model for human blastocysts. Hum. Reprod. 18, 2151–6.CrossRefGoogle ScholarPubMed
Chen, S.U., Lee, T.H., Lien, Y.R., Tsai, Y.Y., Chang, L.J. & Yang, Y.S. (2005). Microsuction of blastocoelic fluid before vitrification increased survival and pregnancy of mouse expanded blastocysts, but pretreatment with the cytoskeletal stabilizer did not increase blastocyst survival. Fertil. Steril. 84, 1156–62.CrossRefGoogle Scholar
Cocero, M.J., De La Espina, S.M.D. & Aguilar, B. (2002). Ultrastructural characteristics of fresh and frozen–thawed ovine embryos using two cryoprotectants. Biol. Reprod. 66, 1244–58.CrossRefGoogle ScholarPubMed
Devries, A.L. & Wohlschlag, D.E. (1969). Freezing resistance in some antarctic fishes. Science 163, 1073–5.CrossRefGoogle ScholarPubMed
Dobrinsky, J.R. (1996). Cellular approach to cryopreservation of embryos. Theriogenology 45, 1726.CrossRefGoogle Scholar
Dobrinsky, J.R., Pursel, V.G., Long, C.R. & Johnson, L.A. (2000). Birth of piglets after transfer of embryos cryopreserved by cytoskeletal stabilization and vitrification. Biol. Reprod. 62, 564–70.CrossRefGoogle ScholarPubMed
Emiliani, S., Van Den Bergh, M., Vannin, A.S., Biramane, J. & Englert, Y. (2002). Comparison of ethylene glycol, 1,2-propanediol and glycerol for cryopreservation of slow-cooled mouse zygotes, 4-cell embryos and blastocysts. Hum. Reprod. 15, 905–10.CrossRefGoogle Scholar
Eroglu, A., Toner, M. & Toth, T.L. (2002). Beneficial effect of microinjected trehalose on the cryosurvival of human oocytes. Fertil. Steril. 77, 152–8.CrossRefGoogle ScholarPubMed
Eroglu, A., Elliott, G., Wright, D.L., Toner, M. & Toth, T.L. (2005). Progressive elimination of microinjected trehalose during mouse embryonic development. Reprod. BioMed. Online 10, 503–10.CrossRefGoogle ScholarPubMed
Fabian, D., Gjorett, J.O., Berthelot, F., Martinat-Botte, F. & Maddox-Hyttel, P. (2005). Ultrastructure and cell death of in vivo derived and vitrified porcine blastocysts. Mol. Reprod. Dev. 70, 155–65.CrossRefGoogle ScholarPubMed
Fair, T., Lonergan, P., Dinnyes, A., Cottell, D.C., Hyttel, P., Ward, F.A. & Boland, M.P. (2001). Ultrastructure of bovine blastocysts following cryopreservation: effect of method of blastocyst production. Mol. Reprod. Dev. 58, 186–95.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Fletcher, G.L., Goddard, S.V. & Wu, Y.L. (1999). Antifreeze proteins and their genes: from basic research to business opportunity. Chemtech 29, 1728.Google Scholar
Gaida, B. (1996). Vitrification of rabbit embryos at 1-cell to morula stage in an ethylene glycol-based solution. CryoLetters, 7, 368–70.Google Scholar
Hasler, J.F., Hurtgen, P.J., Jin, Z.Q. & Stokes, J.E. (1997). Survival of IGF-derived bovine embryos frozen in glycerol or ethylene glycol. Theriogenology 48, 563–79.CrossRefGoogle ScholarPubMed
Hincha, D.K., De Vries, A.L. & Schmitt, J.M. (1993). Cryotoxicity of antifreeze proteins and glycoproteins to spinach thylakoid membranes – comparison with cryotoxic sugar acids. Biochem. Biophys. Acta 1146, 258–64.CrossRefGoogle ScholarPubMed
Kagabu, S. & Umezu, M. (2000). Transplantation of cryopreserved mouse, Chinese hamster, rabbit, Japanese monkey and rat ovaries into rat recipients. Exp. Anim. 49, 1721.CrossRefGoogle ScholarPubMed
Kasai, M., Komi, J.H., Takakama, A., Tsudera, H., Sakurai, T. & Machida, T. (1990). A simple method for mouse embryo cryopreservation in a low toxicity vitrification solution, without appreciable loss of viability. J. Reprod. Fert. 89, 91–7.CrossRefGoogle Scholar
Kasai, M., Hamaguchi, Y., Zhu, S.E., Miyake, T., Sakurai, T. & Machida, T. (1992). High survival of rabbit morulae after vitrification in an ethylene glycol based solution by a simple method. Biol. Reprod. 46, 1042–8.CrossRefGoogle Scholar
Kohli, V., Robles, V., Cancela, M.L., Acker, J.P., Waskiewicz, A.J. & Elezzabi, A.Y. (2007). An alternative method for delivering exogenous material into developing zebrafish embryos. Biotechnol. Bioeng. 98, 1230–41.CrossRefGoogle ScholarPubMed
Kuleshova, L., Gianaroli, L., Magli, C., Ferraretti, A. & Trounson, A. (1999). Birth following vitrification of a small number of human oocytes: case report. Hum. Reprod. 14, 3077–9.CrossRefGoogle ScholarPubMed
Lagneaux, D., Huhtinen, M., Koskinen, E. & Palmer, E. (1997). Effect of anti-freeze protein (AFP) on the cooling and freezing of equine embryos as measured by DAPI-staining. Equine Vet. J. Suppl. 25, 85–7.CrossRefGoogle Scholar
Landel, C.P. (2005). Archiving mouse strains by cryopreservation. Lab. Anim. NY 34, 50–7.CrossRefGoogle ScholarPubMed
Lane, M., Maybach, J.M., Hooper, K., Hasler, J.F. & Gardner, D.K. (2003). Cryosurvival and development of bovine blastocysts are enhanced by culture with recombinant albumin and hyaluronan. Mol. Reprod. Dev. 64, 70–8.CrossRefGoogle ScholarPubMed
Lee, S.H., Shin, C.S., Ko, J.J., Lee, H.C., Park, C. & Lee, K.A. (2000). In vitro culture of the human adult ovarian tissues after vitrification: comparison among detection methods of the culture effects. Fertil. Steril. 74 (Suppl.), 1161 (Abstr. P-208).CrossRefGoogle Scholar
Liebermann, J. (2003). Recent developments in human oocyte, embryo and blastocyst vitrification: where are we now? Reprod. Biomed. Online 7, 124134.CrossRefGoogle ScholarPubMed
Lopez-Bejar, M. & Lopez-Gatius, F. (2002). Non-equilibrium cryopreservation of rabbit embryos using modified (sealed) open pulled straw procedure. Theriogenology 58, 1541–52.CrossRefGoogle Scholar
Madura, J.D., Baran, K. & Wierzbicki, A. (2000). Molecular recognition and binding of thermal hysteresis proteins to ice. J. Molec. Recog. 13, 101–13.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Martinez-Paramo, S., Perez-Cerezales, S., Robles, V., Anel, L. & Herraez, M.P. (2008). Incorporation of antifreeze proteins into zebrafish embryos by a non-invasive method. Cryobiology 56, 216–22.CrossRefGoogle ScholarPubMed
Makarevich, A.V., Chrenek, P., Olexikova, L., Popelkova, M., Turanova, Z., Ostro, A. & Pivko, J. (2008). Post-thaw survival, cell death and actin cytoskeleton in gene-microinjected rabbit embryos after vitrification. Theriogenology 70, 675–81.CrossRefGoogle ScholarPubMed
Marquez-Alvarado, Y.C., Galina, C.S., Castilla, B., Leon, H. & Morena-Mendoza, N. (2004). Evidence of damage in cryopreserved and fresh bovine embryos using the Tunel technique. Reprod. Dom. Anim. 39, 141–5.CrossRefGoogle ScholarPubMed
Martino, A., Songsasen, N. & Leibo, S.P. (1996). Development into blastocysts of bovine oocytes cryopreserved by ultra-rapid cooling. Biol. Reprod. 54, 1059–69.CrossRefGoogle ScholarPubMed
Mavrides, A. & Morroll, D. (2005). Bypassing the effect of zona pellucida changes on embryo formation following cryopreservation of bovine oocytes. Eur. J. Obstet. Gynecol. Reprod. Biol. 118, 6670.CrossRefGoogle ScholarPubMed
Moore, K. & Bonilla, A.Q. (2006). Cryopreservation of mammalian embryos: the state of the art. ARBS Annu. Rev. Biomed. Sci. 8, 1932.Google Scholar
Moreira Da Silva, F. & Metelo, R. (2005). Relation between physical properties of the zona pellucida and viability of bovine embryos after slow-freezing and vitrification. Reprod. Dom. Anim. 40, 205–9.CrossRefGoogle ScholarPubMed
Naik, B.R., Rao, B.S., Vagdevi, R., Gnanprakash, M., Amarnath, D. & Rao, V.H. (2005). Conventional slow freezing, vitrification and open pulled straw (OPS) vitrification of rabbit embryos. Anim. Reprod. Sci. 86, 329–38.CrossRefGoogle ScholarPubMed
Nguyen, B.X., Sotomaru, Y., Tani, T, Kato, Y. & Tsunoda, Y. (2000). Efficient cryopreservation of bovine blastocysts derived from nuclear transfer with somatic cells using partial dehydration and vitrification. Theriogenology 53, 1439–48.CrossRefGoogle ScholarPubMed
Palasz, A., Alkemade, S. & Mapletoft, R.J. (1993). The use of sodium hyaluronate in freezing media for bovine and murine embryos. Cryobiology 30, 172–8.CrossRefGoogle ScholarPubMed
Palasz, A.T., Gustafsson, H., Rodrigues-Martinez, H., Gusta, L., Larsson, B. & Mapletoft, R.J. (1997). Vitrification of bovine IVF blastocysts in an ethylene glycol/sucrose solution and heat-stable plant-extracted proteins. Theriogenology 47, 865–97.CrossRefGoogle Scholar
Papis, K., Sypecka, J., Korwin-Kossakowski, M., Wenta-Muchalska, E. & Bilska, B. (2005). Banking of embryos of mutated, paralytic tremor rabbit by means of vitrification. Lab. Anim. 39, 284–9.CrossRefGoogle ScholarPubMed
Park, S.Y., Kim, E.Y., Cui, X.S., Tae, J.C., Lee, W.D., Kim, N.H., Park, S.P. & Lim, J.H. (2006). Increase in DNA fragmentation and apoptosis-related gene expression in frozen–thawed bovine blastocysts. Zygote 14, 125–31.CrossRefGoogle ScholarPubMed
Pivko, J., Kubovicova, E., Grafenau, P. & Oberfranc, M. (1998). Ultrastructural Analysis of Early Cow Embryos after Freezing. pp. 22–6. Acta Fytotech. Zootech. Univ. Agric. Nitra.Google Scholar
Pivko, J., Kubovicova, E., Grafenau, P., Riha, Ľ. & Zibrin, M. (2003). Ultraštrukturálne zmeny in vitro produkovaných embryí kráv po vitrifikácii metódou OPS a následnej kultivácii. J. Farm Anim. Sci. 36, 1116.Google Scholar
Popelkova, M., Chrenek, P., Pivko, J., Makarevič, A.V., Kubovičová, E. & Kačmarik, J. (2005). Survival and ultrastructure of gene-microinjected rabbit embryos after vitrification. Zygote 13, 283–93.CrossRefGoogle ScholarPubMed
Popelkova, M., Turanova, Z., Koprdova, L., Ostro, A., Toporcerova, S., Makarevich, A.V. & Chrenek, P. (2008). Effect of vitrification technique and assisted hatching on rabbit embryo developmental rate. Zygote 17, 5761.CrossRefGoogle ScholarPubMed
Rall, W.F. & Fahy, G.M. (1985). Ice–free cryopreservation of mouse embryos at –196 °C by vitrification. Nature 313, 573–5.CrossRefGoogle ScholarPubMed
Robles, V., Barbosa, V., Herraez, M.P., Martinez-Paramo, S. & Cancela, M.L. (2007). The antifreeze protein type I (AFP I) increases seabream (Sparus aurata) embryos tolerance to low temperatures. Theriogenology 68, 284–9.CrossRefGoogle ScholarPubMed
Rubinsky, B., Arav, A., Mattioli, M. & De Vries, A.L. (1990). The effect of antifreeze glycopeptides on membrane potential changes at hypothermic temperatures. Biochem. Biophys. Res. Commun. 173, 1369–74.CrossRefGoogle ScholarPubMed
Scholander, P.F., Van Dam, L., Kanwisher, J.W., Hammel, H.T. & Gordon, M.S. (1957). Supercooling and osmoregulation in Arctic fish. J. Cell. Comp. Physiol. 49, 524.CrossRefGoogle Scholar
Shaw, J., Oranratnachai, A. & Trounson, A. (2000). Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology 53, 5972.CrossRefGoogle ScholarPubMed
Silvestre, M.A., Saeed, A.M., Escriba, M.J. & Garcia-Ximenez, F.Vitrification of in vitro cultured rabbit morulae. Anim. Reprod. Sci. 76, 113–24.CrossRefGoogle Scholar
Sommerfeld, V. & Niemann, H. (1999). Cryopreservation of bovine in vitro produced embryos using ethylene glycol in controlled freezing or vitrification. Cryobiology 38, 95105.CrossRefGoogle ScholarPubMed
Son, W.V., Yoon, S.H., Yoon, H.J, Lee, S.M. & Lim, J.H. (2003). Pregnancy outcome following transfer of human blastocysts vitrified on electron microscopy grids after induced collapse of the blastocoele. Hum. Reprod. 18, 137–9.CrossRefGoogle ScholarPubMed
Sugimoto, M., Miyamoto, H., Kabasawa, T. & Manabe, N. (1996). Follicle survival in neonatal rat ovaries cryopreserved by vitrification. CryoLetters 17, 93–8.Google Scholar
Tharasanit, T., Colenbrander, B. & Stout, T.A.E. (2005). Effect of cryopreservation on the cellular integrity of equine embryos. Reproduction 129, 789–98.CrossRefGoogle ScholarPubMed
Vajta, G., Booth, P.J., Holm, P., Greve, T. & Callesen, H. (1997). Successful vitrification of early stage bovine in vitro produced embryos with the open pulled straw (OPS) method. CryoLetters 18, 191–5.Google Scholar
Vajta, G., Holm, P., Kuwayama, M., Booth, P.J., Jacobsen, H., Greve, T. & Callesen, H. (1998). Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol. Reprod. Dev. 51, 53–8.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Vanderzwalmen, P., Bertin, G., Debauche, C., Standaert, V., Van Roosendaal, E., Vandervorst, M., Bollen, N., Zech, H., Mukaida, T., Takahashi, K. & Schoysman, R. (2002). Births after vitrification at morula and blastocyst stages: Effect of artificial reduction of the blastocoelic cavity before vitrification. Hum. Reprod. 17, 744–51.CrossRefGoogle ScholarPubMed
Vincent, C., Turner, K., Pickering, S.J. & Johnson, M.H. (1991). Zona pellucida modifications in the mouse in the absence of oocyte activation. Mol. Reprod. Dev. 28, 394404.CrossRefGoogle ScholarPubMed
Visintin, J.A., Martin, J.F.P., Bevilacqua, E.M., Mello, M.R.B., Nicacio, A.C. & Assumpcao, M.E.O.A. (2002). Cryopreservation of Bos taurus vs Bos indicus embryos: are they really different? Theriogenology 57, 345–59.CrossRefGoogle ScholarPubMed
Wang, T., Zhu, Q., Yang, X., Layne, J.R. & De Vries, A.L. (1994). Antifreeze glycoproteins from Antarctic notothenioid fishes fail to protect the rat cardiac explant during hypothermic and freezing preservation. Cryobiology 31, 185–92.CrossRefGoogle ScholarPubMed
Yeh, Y. & Feeney, R.E. (1996). Antifreeze proteins: structures and mechanisms of function. Chem. Rev. 96, 601–17.CrossRefGoogle ScholarPubMed
Yoon, T.K., Chung, H.M., Lim, J.M., Han, S.Y., Ko, J.J. & Cha, K.Y. (2000). Pregnancy and delivery of healthy infants developed from vitrified oocytes in a stimulated in vitro fertilization-embryo transfer program (letter). Fertil. Steril. 74, 180–1.CrossRefGoogle Scholar