Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T23:24:37.862Z Has data issue: false hasContentIssue false

Properties of Low Residual Stress Silicon Oxynitrides Used as a Sacrificial Layer

Published online by Cambridge University Press:  10 February 2011

S. Habermehl
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, sdhaber@sandia.gov
A. K. Glenzinski
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, sdhaber@sandia.gov
W. M. Halliburton
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, sdhaber@sandia.gov
J. J. Sniegowski
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, sdhaber@sandia.gov
Get access

Abstract

Low residual stress silicon oxynitride thin films are investigated for use as a replacement for silicon dioxide (SiO2) as sacrificial layer in surface micromachined microelectrical-mechanical systems (MEMS). It is observed that the level of residual stress in oxynitrides is a function of the nitrogen content in the film. MEMS film stacks are prepared using both SiO2 and oxynitride sacrificial layers. Wafer bow measurements indicate that wafers processed with oxynitride release layers are significantly flatter. Polycrystalline Si (poly-Si) cantilevers fabricated under the same conditions are observed to be flatter when processed with oxynitride rather than SiO2 sacrificial layers. These results are attributed to the lower post-processing residual stress of oxynitride compared to SiO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Buhler, J., Steiner, F-P and Baltes, H., J. Micromech. Microeng. 7, p. R1 (1997).Google Scholar
2. Guckel, H., Sniegowski, J. J., Christenson, T. R., Mohney, S. and Kelly, T. F., Sensors & Actuators 20, p. 117 (1989).Google Scholar
3. Saks, N. S., Ma, D. I., Fleetwood, D. M., and Twigg, M. E. in Proceedings of the ECS Syposium on Silicon Nitride and Silicon Dioxide Thin Insulating Films, edited by Kapoor, V. (Electrochemical Society, New York, 1994).Google Scholar
4. Habermehl, S., Nasby, R. D., and Rightley, M. J., Appl. Phys. Lett. 75(8), p.1122 (1999).Google Scholar
5. Habraken, F. H. P. M. and Kuiper, A. E. T., Mater. Sci. Eng. R. 12, p. 123 (1994).10.1016/0927-796X(94)90006-XGoogle Scholar
6. Rand, M. J. and Roberts, J. F., J. Electrochem. Soc. 120(3), p. 446 (1973).Google Scholar
7. Limary, S., Stewart, H., Irwin, L., McBrayer, J., Sniegowski, J. J., Montague, S., Smith, J., Boer, M. de, and Jakubczak, J., SPIE Proceedings: Micromachining and Microfabrication Process Technology V 3874, p. 102 (1999).10.1117/12.361210Google Scholar
8. Habermehl, S., J. Appl. Phys. 83(9), p. 4672 (1998).10.1063/1.367253Google Scholar
9.See ASTM standards on wafer bow and warp, methods F 534-97 and F 657-92.Google Scholar
10. Boer, M. P. de and Michalske, T. A., J. Appl. Phys. 86(2), p. 817 (1999).Google Scholar
11. Jaccodine, R. J. and Schlegel, W. A., J. Appl. Phys. 37, p. 2429 (1966).Google Scholar
12. Habermehl, S., (unpublished).Google Scholar