Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T04:05:49.527Z Has data issue: false hasContentIssue false

Mechanical Properties of Nanostructured Hard Coating of ZrO2

Published online by Cambridge University Press:  31 January 2011

Renat F. Sabirianov
Affiliation:
rsabirianov@mail.unomaha.edu, University of Nebraska Omaha, Physics, Omaha, Nebraska, United States
Fereydoon Namavar
Affiliation:
fnamavar@unmc.edu, University of Nebraska Medical Center, Orthopaedic Surgery and Rehabilitation, Omaha, Nebraska, United States
Xiao Cheng Zeng
Affiliation:
xczeng@phase2.unl.edu, University of Nebraska, Chemistry, Lincoln, Nebraska, United States
Jaeil Bai
Affiliation:
jibai@phase1a.unl.edu, University of Nebraska, Chemistry, Lincoln, Nebraska, United States
Wai-Ning Mei
Affiliation:
physmei@mail.unomaha.edu, University of Nebraska Omaha, Physics, Omaha, Nebraska, United States
Get access

Abstract

Nano-crystalline films of pure cubic ZrO2 have been produced by ion beam assisted deposition (IBAD) processes which combine physical vapor deposition with the concurrent ion beam bombardment in a high vacuum environment and exhibit superior properties and strong adhesion to the substrate. Oxygen and argon gases are used as source materials to generate energetic ions to produce these coatings with differential nanoscale (7 to 70 nm grain size) characteristics that affect the wettability, roughness, mechanical and optical properties of the coating. The nanostructurally stabilized chemically pure cubic phase has been shown to possess hardness as high as 16 GPa and a bulk modulus of 235 GPa. We examine the mechanical properties and the phase stability in zirconia nanoparticles using first principle electronic structure method. The elastic constants of the bulk systems were calculated for monoclinic, tetragonal and cubic phases. We find that calculated bulk modulus of cubic phase (237GPa) agrees well with the measured values, while that of monoclinic (189GPa) or tetragonal (155GPa) are considerably lower. We observe considerable relaxation of lattice in the monoclinic phase near the surface. This effect combined with surface tension and possibly vacancies in nanostructures are sources of stability of cubic zirconia at nanoscale.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gremillard, L. and Chevalier, J., Key Engineering Materials, 361363, 791 (2008).Google Scholar
2 Shukla, S., Seal, S., Int. Mater. Rev. 50, 4564 (2005).Google Scholar
3 Namavar, F., Wang, G., Cheung, C. L., Sabirianov, R., Zeng, X. C., Mei, W.N., Bai, J., Brewer, J. R., Haider, H. and Garvin, K.L., Nanotechnology 18, 415702 (2007).Google Scholar
4 Namavar, F. , Cheung, C. L., Sabirianov, R. F., Mei, W.-N., Zeng, X. C., Wang, G., Haider, H. and Garvin, K. L., NanoLetters, 8, 988 (2008).Google Scholar
5 Dong, L. and D.Srolowitz, J., J. Appl. Phys., 84, 5261 (1998).Google Scholar
6 Chiu, C.-H., Huang, Z., and Poh, C. T., Physical Review Letters, 93 (13), 36105 (2004).Google Scholar
7 Sabiryanov, R. F., Larsson, M.I., Cho, K.J., Nix, W.D., Clemens, B.M., Phys. Rev.B, 67, 125412–5412 (2003).Google Scholar
8 Soo, Y. L., Chen, P. J., Huang, S. H., Shiu, T. J., Tsai, T. Y., Chow, Y. H., Lin, Y. C., Weng, S. C., Chang, S. L., Wang, G., Cheung, Chin Li, Sabirianov, R. F., Mei, W. N., Namavar, F., Haider, H., Garvin, K. L., Lee, J. F., Lee, H. Y., and Chu, P. P., J. Appl. Phys. 104, 113535 (2008).Google Scholar
9 Fabris, S., Paxton, A. T. and Finnis, M. W., Acta Mater. 50, 5171 (2002).Google Scholar
10 Kandil, H. M. and Greiner, J.D, and Smith, J.F., J. Am. Ceram. Soc. 67, 341 (1984).Google Scholar
11 Ingel, R.P. and Lewis, D. III , J. Am. Ceram. Soc. 71, 265 (1988).Google Scholar
12 Stefanovich, E.V., Shlunger, A.L., Catlow, C.R.A., Phys. Rev. B 49, 11560 (1994).Google Scholar
13 Aldebert, P. and Traverse, J.P., J. Am. Ceram. Soc. 68, 34 (1985).Google Scholar
14 Wilson, M., Schonberger, U. and Finnis, M., Phys. Rev. B 54, 9147 (1996).Google Scholar
15 Kresse, G. and Furthmüller, J., Phys. Rev. B, 54, 11169 (1996).Google Scholar
16 Kittel, C., Introduction to Solid State physics, 3rd ed., John Wiley & Son, (1967).Google Scholar
17 Eichler, J., Eisele, U., and Rödel, J., J. Am. Ceram. Soc., 87 (7), 1401 (2004).Google Scholar
18 Shuttleworth, R., Proc. Phys. Soc. London, Sect. A 63, 444 (1950).Google Scholar