Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T08:22:43.655Z Has data issue: false hasContentIssue false

Investigation of a Chinese Ink Rubbing by 14C AMS Analysis

Published online by Cambridge University Press:  18 July 2016

Hong-Chien Yuan
Affiliation:
Donaufelder Strasse 246/4, A-1220 Vienna, Austria.
Walter Kutschera*
Affiliation:
Vienna Environmental Research Accelerator (VERA), Institut für Isotopenforschung und Kernphysik, Universität Wien, Währinger Strasse 17, A-1090 Vienna, Austria.
Tze-Yue Lin
Affiliation:
Industrial Technology Research Institute, Hsinchu, Taiwan, China.
Peter Steier
Affiliation:
Vienna Environmental Research Accelerator (VERA), Institut für Isotopenforschung und Kernphysik, Universität Wien, Währinger Strasse 17, A-1090 Vienna, Austria.
Christof Vockenhuber
Affiliation:
Vienna Environmental Research Accelerator (VERA), Institut für Isotopenforschung und Kernphysik, Universität Wien, Währinger Strasse 17, A-1090 Vienna, Austria.
Eva Maria Wild
Affiliation:
Vienna Environmental Research Accelerator (VERA), Institut für Isotopenforschung und Kernphysik, Universität Wien, Währinger Strasse 17, A-1090 Vienna, Austria.
*
Corresponding author. Email: walter.kutschera@univie.ac.at.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The date of a Chinese ink rubbing was determined using radiocarbon accelerator mass spectrometry (AMS) to be in the range from AD 1480 to AD 1670 (95.4% confidence limit). Together with a scanning electron miscroscope (SEM) analysis of the ink and a comparative study of the Chinese characters, it was determined that the ink rubbing must have been performed before Emperor Kang Hsi (AD 1662–1722), who ruled at the beginning of the Chin Dynasty. On the other hand, the stone stele, from which the ink rubbing was produced, was carved in AD 531, which is consistent with an analysis of some erased characters. Such analysis seems to be useful to help clarify possible forgeries of these art objects.

Type
Articles
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Bronk Ramsey, C. 2000. The OxCal Program version 3.5 URL: http://www.rlaha.ox.ac.uk/orau/index.htm.Google Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A):355–63.Google Scholar
Burleigh, R, Baynes-Cope, AD. 1983. Possibilities in the dating of writing materials and textiles. Radiocarbon 25(2):669–74.CrossRefGoogle Scholar
Kutschera, W, Collon, P, Friedmann, H, Golser, R, Hille, P, Priller, A, Rom, W, Steier, P, Tagesen, S, Wallner, A, Wild, E, Winkler, G. 1997. VERA: a new AMS facility in Vienna. Nuclear Instruments and Methods in Physics Research B 123:4750.Google Scholar
Priller, A, Golser, R, Hille, P, Kutschera, W, Rom, W, Steier, P, Walner, A, Wild, E. 1997. First performance tests of VERA. Nuclear Instruments and Methods in Physics Research B 123:193–8.Google Scholar
Puchegger, S, Rom, W, Steier, P. 2000. Automated evaluation of 14C AMS measurements. Nuclear Instruments and Methods in Physics Research B 172:274–80.Google Scholar
Rom, W, Golser, R, Kutschera, W, Priller, A, Steier, P, Wild, E. 1998. Systematic investigations of 14C measurements at the Vienna Environmental Research Accelerator. Radiocarbon 40(1):255–63.Google Scholar
Steier, P, Puchegger, S, Golser, R, Kutschera, W, Priller, A, Rom, W, Wallner, A, Wild, E. 2000. Developments towards a fully-automated AMS system. Nuclear Instruments and Methods in Physics Research B 161–163:250–4.Google Scholar
Steier, P, Golser, R, Kutschera, W, Priller, A, Vockenhuber, C, Winkler, S. Forthcoming. VERA, an AMS facility for “all” isotopes. Nuclear Instruments and Methods in Physics Research B. Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. INTCAL 1998 radiocarbon age calibration, 24,000–0 BP. Radiocarbon 40(3):1041–83.Google Scholar
Vockenhuber, C, Ahmad, I, Golser, R, Kutschera, W, Liechtenstein, V, Priller, A, Steier, P, Winkler, S. 2003. Accelerator mass spectrometry of heavy long-lived radionuclides. International Journal of Mass Spectronomy 223–224:713–32.Google Scholar
Wild, E, Golser, R, Hille, P, Kutschera, W, Priller, A, Puchegger, S, Rom, W, Steier, P, Vycudilik, W. 1998. First 14C results from archaeological and forensic studies at the Vienna Environmental Research Accelerator. Radiocarbon 40(1):273–81.Google Scholar
Wild, EM, Stadler, P, Bondár, M, Draxler, S, Friesinger, H, Kutschera, W, Priller, A, Rom, W, Ruttkay, E, Steier, P. 2001. New chronological frame for the young Neolithic Baden culture in central Europe. Radiocarbon 43(2B):1057–63.Google Scholar
Winkler, S, Ahmad, I, Golser, R, Kutschera, W, Orlandini, KA, Paul, M, Priller, A, Steier, P, Valenta, A, Vockenhuber, C. Forthcoming. Developing a detection method of environmental 244Pu. Nuclear Instruments and Methods in Physics Research B. Google Scholar
Yuan, H-C. Forthcoming. On the authenticity of Chang Hsuan Stele. Taiwan: National Museum Monthly of Chinese Art. In Chinese.Google Scholar