Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T10:18:29.901Z Has data issue: false hasContentIssue false

Micro-, Meso- and Macro-Texture and Fatigue Crack Roughness in Al-Li 2090 T8E41

Published online by Cambridge University Press:  10 February 2011

J. D. Haase
Affiliation:
School of Materials Science and Engineering and Mechanical Properties Research Laboratory, Georgia Institute of Technology, Atlanta, GA 30332-0245
A. Guvenilir
Affiliation:
School of Materials Science and Engineering and Mechanical Properties Research Laboratory, Georgia Institute of Technology, Atlanta, GA 30332-0245
J. R. Witt
Affiliation:
School of Materials Science and Engineering and Mechanical Properties Research Laboratory, Georgia Institute of Technology, Atlanta, GA 30332-0245
S. R. Stock
Affiliation:
School of Materials Science and Engineering and Mechanical Properties Research Laboratory, Georgia Institute of Technology, Atlanta, GA 30332-0245
Get access

Abstract

The use of synchrotron polychromatic x-ray microbeams in the transmission geometry is described for mapping grain orientation as a function of position and for relating this microtexture to the formation of large asperities on fatigue crack surfaces in Al-Li 2090 T8E41. In common with the centers of rolled plates of many aluminum alloys, Al-Li 2090 T8E41 has a sharp average texture or macrotexture different from that in the outer portions of the plate. The geometry of large asperities in Al-Li 2090 has been related to this macrotexture, and the resulting roughness-induced crack closure is recognized to be responsible for the very low crack propagation rates in certain plate orientations. This report focuses on why asperities form at certain positions and why the crack remains relatively planar elsewhere. The microtexture (i.e., the grain-to-grain orientation variation) seems to be organized into a specific type of mesotexture: multiple adjacent grains have nearly identical orientations and form substantial volumes of near-single-crystal material. Transitions between differently oriented near-singlecrystal volumes or between a near-single- crystal region and more randomly oriented grains appear to bound asperities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rao, K. T. Venkateswara, Yu, W. and Ritchie, R. O., Met Trans 19A, 549 and 563 (1988).Google Scholar
2. Pao, P. S., Cooley, L. A, Imam, M. A. and Yoder, G. R., Scr. Met. 23, 1455 (1989).Google Scholar
3. Yoder, G. R., Pao, P. S., Imam, M. A. and Cooley, L. A., in Proc. Fifth Int. Aluminum-Lithium Conf., Sanders, T. H. Jr and Starke, E. A Jr, Eds, Mat. and Comp. Eng. Publ., Birmingham, UK p. 1033 (1989).Google Scholar
4. Ritchie, R. O., in Fatigue Thresholds, Backland, J., Blom, A. and Beevers, C. J., eds., Eng Advisory Services, Warley, UK, p. 503 (1981).Google Scholar
5. Ritchie, R. O., Mater. Sci. and Eng. 103, 15 (1988).Google Scholar
6. Breunig, T. M., Stock, S. R., Antolovich, S. D., Kinney, J. H., Massey, W. N. and Nichols, M. C., ASTM STP 1131, 749 (1992).Google Scholar
7. Guvenilir, A., Bruenig, T. M., Kinney, J. H. and Stock, S. R., Acta. Mat. 45, 1977 (1997).Google Scholar
8. Guvenilir, A., Investigation into Asperity Induced Closure in an Al-Li Alloy Using X-Ray Tomography, PhD Thesis, Georgia Inst. of Technology. December 1995.Google Scholar
9. Guvenilir, A., Stock, S. R., Barker, M. D., and Betz, R. A., in 4th Int. Conf On Aluminum Alloys, Sanders, T. H. Jr. and Starke, E. A. Jr., Eds., Georgia Institute of Technology, Atlanta, p. 413 (1994).Google Scholar
10. Guvenilir, A. and Stock, S. R., Fract. Fatigue Eng. Mater. Struct., in press May 1998.Google Scholar
11. Stock, S. R., Guvenilir, A., Piotrowski, D. P., and Rek, Z. U., MRS Symp. Proc. 375, 275 (1995).Google Scholar
12. Piotrowski, D. P., Synchrotron Polychromatic X-ray Diffraction Tomography of Large Grained Polycrystalline Samples, MS Thesis, Georgia Institute of Technology. March 1996.Google Scholar
13. Piotrowski, D. P., Stock, S. R., Guvenilir, A., Haase, J. D., and Rek, Z. U., MRS Symp. Proc. 437, 125 (1996).Google Scholar
14. Poulsen, H. F, Garbe, S., Lorentzen, T., Jensen, D.Juul, Poulsen, F. W., Anderson, N. H., Frello, T., Feidenhans'l, R. and Graafsma, H., J. Synchrotron Rad. 4, 147 (1997).Google Scholar
15. Wang, P. C, III, G. S. Cargill and Noyan, I. C., MRS Symp. Proc. 375, p.247 (1995).Google Scholar
16. Haase, J. D., Guvenilir, A., Witt, J. R. and Stock, S. R., Acta Mat. in press (1998).Google Scholar
17. ASTM Standard E399.Google Scholar
18. Ameniya, Y., Matsushita, T., Nakagawa, A., Satow, Y., Miyahora, J. and Chikawa, J., Nucl. Instrum. Meth. A266, 645 (1988).Google Scholar
19. Whiting, B. R., Owen, J. F. and Rubin, B. R., Nucl. Instrum Meth. A266, 628 (1988).Google Scholar
20. Stock, S. R., Rek, Z. U., Chung, Y. H., Huang, P. C., and Ditchek, B. M., JAppl Phys, 73, 1 (1993).Google Scholar
21. Barlat, F., Miyasota, S. M., Liu, J. and Brem, J. C., in 4th Int. Conf on Aluminum Alloys ,Sanders, T. H. Jr. and Starke, E. A. Jr., Eds., Georgia Inst. Tech., Atlanta, p. 389 (1994).Google Scholar