Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T20:10:24.217Z Has data issue: false hasContentIssue false

Radiation Damage Effects on the Magnetic Properties of Pu(1-x)Amx (x=0.224)

Published online by Cambridge University Press:  26 February 2011

Scott K. McCall
Affiliation:
mccall10@llnl.gov, LLNL, CMS, L-356, 7000 East Ave, Livermore, CA, 94550, United States
M. J. Fluss
Affiliation:
fluss1@llnl.gov, Lawrence Livermore National Laboratory, Livermore, CA, 94550, United States
B. W. Chung
Affiliation:
chung7@llnl.gov, Lawrence Livermore National Laboratory, Livermore, CA, 94550, United States
M. W. McElfresh
Affiliation:
mcelfresh1@llnl.gov, Lawrence Livermore National Laboratory, Livermore, CA, 94550, United States
R. G. Haire
Affiliation:
hairerg@ornl.gov, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
Get access

Abstract

Pu(Am) is stable in the fcc δ-phase from a few atomic percent to nearly 80 atomic percent Am, expanding the average interatomic separation as the alloy concentration of Am increases. Both Pu and Am spontaneously decay by α-emission creating self-damage in the lattice in the form of vacancy-interstitial pairs and their aggregates. At sufficiently low temperatures, the damage is frozen in place, but can be removed by thermal annealing at sufficiently high temperatures, effectively resetting the system to an undamaged condition. The magnetic susceptibility and magnetization are observed to increase systematically as a function of accumulated damage in the fcc δ-Pu(1-x)Am(x) (x=0.224). Some results of these observations are reported here.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Dormeval, M., Ph.D. thesis, Universite de Bourgogne, 2001 Google Scholar
[2] Baclet, N., Dormeval, M., P, P., Fournier, J. M., Wastin, F., Colineau, E., Rebizant, J., and Lander, G. H., J. Nucl. Sci. Technol. Suppl. 3, 148 (2002).Google Scholar
[3] McCall, S. K., Fluss, M. J., Chung, B. W., McElfresh, M. W., Chapline, G. F., and Jackson, D. D., Forthcoming Article in J. Alloys Compd. (2007).Google Scholar
[4] Wirth, B. D., Schwartz, A. J., Fluss, M. J., Caturla, M. J., Wall, M. A., and Wolfer, W. G., MRS Bulletin 26, 679 (2001).Google Scholar
[5] Kanellakopulos, B., Blaise, A., Fournier, J. M., and Muller, W., Solid State Commun. 17, 713 (1975).Google Scholar
[6] Lashley, J. C., Lawson, A., McQueeney, R. J., and Lander, G. H., Phys. Rev. B 72, 054416 (2005).Google Scholar
[7] McCall, S. K., Fluss, M. J., Chung, B. W., McElfresh, M. W., Jackson, D. D., and Chapline, G. F., PNAS 103, 17179 (2006).Google Scholar
[8] Dunlap, B. D., Brodsky, M. B., Kalvius, G. M., and Shenoy, G. K., in Plutonium 1970 and Other Actinides, Nuclear Metals 17, edited by Miner, W. N. (Metall.Soc. and Amer. Inst. Mining, 1970), p. 331.Google Scholar
[9] Brodsky, M. B., Rep. Prog. Phys. 41, 1547 (1978).Google Scholar