Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T19:57:40.634Z Has data issue: false hasContentIssue false

Absorption enhancement in photonic crystal thin films by pseudo disordered perturbations

Published online by Cambridge University Press:  04 February 2014

Romain Peretti
Affiliation:
Institut des Nanotechnologies de Lyon (INL), Université de Lyon, UMR 5270, CNRS-INSA-ECL-UCBL, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully Cedex, France
Guillaume Gomard
Affiliation:
Institut des Nanotechnologies de Lyon (INL), Université de Lyon, UMR 5270, CNRS-INSA-ECL-UCBL, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully Cedex, France
Loïc Lalouat
Affiliation:
Institut des Nanotechnologies de Lyon (INL), Université de Lyon, UMR 5270, CNRS-INSA-ECL-UCBL, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully Cedex, France
Christian Seassal
Affiliation:
Institut des Nanotechnologies de Lyon (INL), Université de Lyon, UMR 5270, CNRS-INSA-ECL-UCBL, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully Cedex, France
Emmanuel Drouard*
Affiliation:
Institut des Nanotechnologies de Lyon (INL), Université de Lyon, UMR 5270, CNRS-INSA-ECL-UCBL, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully Cedex, France
*
*Corresponding author: emmanuel.drouard@ec-lyon.fr
Get access

Abstract

The effects resulting from the introduction of a controlled perturbation in a single pattern membrane on its absorption are first studied and then analyzed on the basis of band folding considerations. The interest of this approach for photovoltaic applications is finally demonstrated by overcoming the integrated absorption of an optimized single pattern membrane through the introduction of a proper pseudo disordered perturbation.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Present address: Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

References

REFERENCES

Seassal, C., Park, Y., Fave, A., Drouard, E., Fourmond, E., Kaminski, A., Lemiti, M., Letartre, X., and Viktorovitch, P., SPIE Photonics Europe, Photonics for Solar Energy Systems II, Proceedings of SPIE 7002, 700207 (2008).CrossRefGoogle Scholar
Gomard, G., Meng, X., Drouard, E., El Hajjam, K., Gerelli, E., Peretti, R., Fave, A., Orobtchouk, R., Lemiti, M., and Seassal, C., J. Opt. 14, 024011 (2012).CrossRefGoogle Scholar
Bozzola, A., Liscidini, M., and Andreani, L.C., Prog. Photovolt: Res. Appl. (2013).Google Scholar
Pratesi, F., Burresi, M., Riboli, F., Vynck, K., and Wiersma, D. S., Opt. Express 21 (Issue S3), A460A468 (2013).CrossRefGoogle Scholar
Lin, C., Martinez, L. J., and Povinelli, M. L., Opt. Express 21 (Issue S5), A872A882 (2013).CrossRefGoogle Scholar
Peretti, R., Gomard, G., Seassal, C., Letartre, X., and Drouard, E., J. Appl. Phys. 111, 123114 (2012).CrossRefGoogle Scholar
Peretti, R., Gomard, G., Seassal, C., Letartre, X., and Drouard, E., SPIE Photonics Europe, Photonic Crystal Materials and Devices X, Proceedings of SPIE 8425, 84250Q (2012).CrossRefGoogle Scholar
Gomard, G., Peretti, R., Drouard, E., Meng, X., and Seassal, C., Opt. Express 21 (Issue S3), A515A527 (2013).CrossRefGoogle Scholar
Peretti, R., Gomard, G., Lalouat, L., Seassal, C., and Drouard, E., Phys. Rev. A 88, 053835 (2013).CrossRefGoogle Scholar
Mandelshtam, V., Prog. Nucl. Mag. Res. Sp. 38, 159 (2001).CrossRefGoogle Scholar
Sakoda, K., Optical properties of photonic crystals (Springer series in optical science) Vol. 80, 187 (2001).CrossRefGoogle Scholar