Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T08:55:38.241Z Has data issue: false hasContentIssue false

Normally-off GaN MOSFETs on Silicon Substrates with High-temperature Operation

Published online by Cambridge University Press:  31 January 2011

Hiroshi Kambayashi
Affiliation:
kambayashi.hiroshi@apd.fites.jp, Furukawa Electric Co., Ltd., Yokohama, Japan
Yuki Niiyama
Affiliation:
niiyama.yuki@apd.fites.jp, Furukawa Electric Co., Ltd., Yokohama, Japan
Takehiko Nomura
Affiliation:
nomu3@apd.fites.jp, Furukawa Electric Co., Ltd., Yokohama, Japan
Masayuki Iwami
Affiliation:
iwami@apd.fites.jp, Furukawa Electric Co., Ltd., Yokohama, Japan
yoshihiro Satoh
Affiliation:
ysatoh@apd.fites.jp, Furukawa Electric Co., Ltd., Yokohama, Japan
Sadahiro Kato
Affiliation:
sadakato@apd.fites.jp, Furukawa Electric Co., Ltd., Yokohama, Japan
Get access

Abstract

We have demonstrated enhancement-mode n-channel gallium nitride (GaN) MOSFETs on Si (111) substrates with high-temperature operation up to 300 °C. The GaN MOSFETs have good normally-off operation with the threshold voltages of +2.7 V. The MOSFET exhibits good output characteristics from room temperature to 300 °C. The leakage current at 300°C is less than 100 pA/mm at the drain-to-source voltage of 0.1 V. The on-state resistance of MOSFET at 300°C is about 1.5 times as high as that at room temperature. These results indicate that GaN MOSFET is suitable for high-temperature operation compared with AlGaN/GaN HFET.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chow, T.P., and Tyagi, R., IEEE Trans. Electron Devices, Vol. 41, pp. 14811483, 1994.10.1109/16.297751Google Scholar
2 Akutas, O., Fan, Z.F., Mohammad, S.N., Botchkarev, A.E., and Morkoç, H., Appl. Phys. Lett., Vol. 69, pp. 38723874, 1996.Google Scholar
3 Yang, W., Lu, J., Asifkhan, M., and Adesida, I., IEEE Trans. Electron Devices, Vol. 48, pp. 581585, 2001.Google Scholar
4 Yoshida, S., and Suzuki, J., Jpn J. Appl. Phys. Lett., Vol. 37, pp. 482484, 1998.10.1143/JJAP.37.L482Google Scholar
5 Yoshida, S., and Suzuki, J., Jpn J. Appl. Phys. Lett., Vol. 38, pp. 851853, 1999.Google Scholar
6 Saito, W., Tanaka, Y., Kuraguchi, M., Tsuda, K., and Ohmura, I., IEEE Trans. Electron Devices, Vol. 53, pp. 356362, 2006.10.1109/TED.2005.862708Google Scholar
7 Umemoto, Y., Hikita, M., Ueno, H., Matsuo, H., Ishida, H., Yanagihara, M., Ueda, T., Tanaka, T., and Ueda, D., IEDM Technical Digest, 2006.Google Scholar
8 Song, D., Liu, J., Cheng, Z., Tang, W. C. W., Lau, K. M., and Chen, K. J., IEEE Electron Device Lett., Vol. 28, no. 3, pp. 189191, 2007.10.1109/LED.2007.891281Google Scholar
9 Matocha, K., Chow, T. P., and Gutmann, R. J., IEEE Trans. Electron Devices, Vol. 52, no. 1 pp. 610, 2005.Google Scholar
10 Huang, W., Khan, T., and Chow, T. P., IEEE Electron Device Lett., Vol.27, no. 10, pp. 796798, 2006.Google Scholar
11 Nomura, T., Kambayashi, H., Niiyama, Y., Otomo, S., and Yoshida, S., Solid-State Electronics 52 pp. 150155, 2008.10.1016/j.sse.2007.07.035Google Scholar
12 Niiyama, Y., Kambayashi, H., Ootomo, S., Nomura, T., Yoshida, S., and Chow, T. P., Jpn J. Appl. Phys. Lett., Vol. 47, No. 9, pp. 71287130, 2008.Google Scholar
13 Otake, H., Egami, S., Ohta, H., Nanashi, Y., and Takasu, H., Jpn J. Appl. Phys. Lett., Vol. 46, No. 25, pp. L599–L601, 2007.10.1143/JJAP.46.L599Google Scholar
14 Otake, H., Chikamatsu, K., Yamaguchi, A., Fjishima, T., and Ohta, H., Appl. Phys. Expr., 1, pp. 011105–1, 2008.10.1143/APEX.1.011105Google Scholar
15 Kodama, M., M. Sugimoto1, Hayashi, E., Soejima, N., Ishiguro, O., Kanechika, M., Itoh, K., Ueda, H., Uesugi, T., and Kachi, T., Appl. Phys. Expr., 1, pp. 021104–1, 2008.10.1143/APEX.1.021104Google Scholar
16 Lee, H.-B., Cho, H.-I., An, H.-S., Bae, Y.-H., Lee, M.-B., Lee, J.-H., and Hahn, S.-H., IEEE Electron Device Lett., Vol.27, no. 2, pp. 8183, 2006.Google Scholar
17 Jang, S., Ren, F., Pearton, S. J., Gila, B. P., Hlad, M., Abernathy, C. R., Yang, H., Pan, C. J., Chyi, J. I., Bove, P., Lahreche, H., and Thuret, J., J. Electron. Materials, Vol.35, No. 4, pp. 685690, 2006.10.1007/s11664-006-0121-1Google Scholar
18 Kambayashi, H., Niiyama, Y., Ootomo, S., Nomura, T., Iwami, M., Satoh, Y., Kato, S., and Yoshida, S., IEEE Electron Device Lett., Vol.28, no. 12, pp.10771079, 2007.Google Scholar
19 Oka, T., and Nozawa, T., IEEE Electron Device Lett., Vol.29, no. 7, pp.668670, 2008.Google Scholar
20 Kambayashi, H., Li, J., Ikeda, N., and Yoshida, S., Mater. Res. Soc. 2006 Fall Symp. Proc. Vol. 955 E, I1520, 2006.Google Scholar