Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T13:33:23.613Z Has data issue: false hasContentIssue false

Characterization of Heterointerfaces in Thin-Film Transistors by Cross-Sectional Transmission Electron Microscopy

Published online by Cambridge University Press:  10 February 2011

K. Kuroda
Affiliation:
Department of Quantum Engineering, Nagoya University, Nagoya 46401, Japan, electric mail: kuroda@numse.nagoya-u.ac.jp
S. Tsuji
Affiliation:
Yamato Laboratory, IBM Japan, Ltd., Shimotsurura, Yamato-shi, Kanagawa 242, Japan
Y. Hayashi
Affiliation:
Yamato Laboratory, IBM Japan, Ltd., Shimotsurura, Yamato-shi, Kanagawa 242, Japan
H. Saka
Affiliation:
Department of Quantum Engineering, Nagoya University, Nagoya 46401, Japan
Get access

Abstract

Hydrogenated amorphous silicon thin-film transistors (a-Si:H TFTs) are now widely used as elements for active matrix liquid crystal displays. The nanometer-scale multilayered structure of a-Si:H TFTs has been characterized by cross-sectional transmission electron microscopy (TEM). The discrete layer construction of a faulty TFTs and the generation of defects during manufacturing processes have been investigated. A combination of focused ion beam (FIB) etching and cross-sectional TEM leads to a successful failure analysis. A contamination layer with a thickness of 10–30 nm and microvoids inside multilayers are identified in faulty TFTs. An a-Si layer on silicon nitride (SiNx) is crystallized during TEM observation. Electron energy loss spectroscopy analysis indicates that the diffusion of nitrogen into a-Si layer causes the crystallization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Grovenor, C. R. M., Microelectronic Materials (Institute of Physics, Oxford, England, 1992), p. 480 Google Scholar
[2] Wisnieff, R. L., Jenkins, L., Polastre, R. J. and Troutman, R. R., SID 90 Dig. 11.2, 190 (1990)Google Scholar
[3] Troutman, R. R., Jenkins, L., Polastre, R. J. and Wisnieff, R. L., IDRC 91 Dig. 6.1, 231(1991)Google Scholar
[4] Kimura, S., Ichioka, Y., Suzuki, K. and Polastre, R. J., SID 92 Dig. 33.4, 628 (1992)Google Scholar
[5] Tsuji, S., Tanaka, M., Iwama, H., Tsutsui, N., Kuroda, K. and Saka, H., J. Vac. Sci. Thechnol. B13, 1353 (1995)Google Scholar
[6] Kirk, E. C. G., Williams, D. A., and Ahmed, H., Inst. Phys. Conf. Ser. 100, 501 (1989)Google Scholar
[7] Tarutani, M., Takai, Y., and Shimizu, R., Jpn. J. Appl. Phys. 31, 1305 (1992)Google Scholar
[8] Yamaguchi, A., Shibata, M., and Hashinaga, T., J. Vac. Sci. Technol. B11, 2016 (1993)Google Scholar
[9] Saka, H., Kuroda, K., Hong, M. H., Kamino, T., Yaguchi, T., Tsuboi, H., Ishitani, T., Koike, H., Shibuya, A., and Adachi, Y., Electron Microscopy 1994, vol. 1, p. 1009 (1994)Google Scholar
[10] Tsuji, S., Tsujimoto, K., Tsutsui, N., Miura, N., Kuroda, K. and Saka, H., Thin Solid films, 281–282, 562(1996)Google Scholar
[11] Konno, T. J. and Sinclair, R., Phil. Mag. B66, 749(1992)Google Scholar
[12] Batstone, J. L., Phil. Mag. A67, 51 (1993)Google Scholar
[13] Houjou, H., Otsuka, Y., Tanii, Y., Hinoshita, C., Horii, S., and Murata, Y., J. Electron. Microsc. 43, 233(1994)Google Scholar