Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-11T13:12:48.941Z Has data issue: false hasContentIssue false

Dynamic and stochastic propagation of the Brenier optimal mass transport

Published online by Cambridge University Press:  20 March 2019

ALISTAIR BARTON
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, V6T 1Z2, Canada email: alistair.barton@mail.mcgill.ca; nassif@math.ubc.ca
NASSIF GHOUSSOUB*
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, V6T 1Z2, Canada email: alistair.barton@mail.mcgill.ca; nassif@math.ubc.ca

Abstract

Similar to how Hopf–Lax–Oleinik-type formula yield variational solutions for Hamilton–Jacobi equations on Euclidean space, optimal mass transportations can sometimes provide variational formulations for solutions of certain mean-field games. We investigate here the particular case of transports that maximize and minimize the following ‘ballistic’ cost functional on phase space TM, which propagates Brenier’s transport along a Lagrangian L,

$$b_T(v, x):=\inf\left\{\langle v, \gamma (0)\rangle +\int_0^TL(t, \gamma (t), {\dot \gamma}(t))\, dt; \gamma \in C^1([0, T], M); \gamma(T)=x\right\}\!,$$
where $M = \mathbb{R}^d$, and T >0. We also consider the stochastic counterpart:
\begin{align*} \underline{B}_T^s(\mu,\nu):=\inf\left\{\mathbb{E}\left[\langle V,X_0\rangle +\int_0^T L(t, X,\beta(t,X))\,dt\right]\!; X\in \mathcal{A}, V\sim\mu,X_T\sim \nu\right\}\!, \end{align*}
where $\mathcal{A}$ is the set of stochastic processes satisfying dX = βX (t, X) dt + dWt, for some drift βX (t, X), and where Wt is σ(Xs: 0 ≤ st)-Brownian motion. Both cases lead to Lax–Oleinik-type formulas on Wasserstein space that relate optimal ballistic transports to those associated with dynamic fixed-end transports studied by Bernard–Buffoni and Fathi–Figalli in the deterministic case, and by Mikami–Thieullen in the stochastic setting. While inf-convolution easily covers cost minimizing transports, this is not the case for total cost maximizing transports, which actually are sup-inf problems. However, in the case where the Lagrangian L is jointly convex on phase space, Bolza-type dualities – well known in the deterministic case but novel in the stochastic case – transform sup-inf problems to sup–sup settings. We also write Eulerian formulations and point to links with the theory of mean-field games.

Type
Papers
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work is part of a Master’s thesis prepared by A. Barton under the supervision of N. Ghoussoub. It was partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

References

Adams, D. R. & Hedberg, L. I. (1996) Function Spaces and Potential Theory, Vol. 314, Grundlehren der Mathematischen Wissenschaften Springer-Verlag, Berlin.CrossRefGoogle Scholar
Ambrosio, L. (2003) Lecture notes on optimal transport problems. In: Mathematical Aspects of Evolving Interfaces, Lecture Notes in Mathematics, Vol. 1812, Springer-Verlag, Berlin/New York, pp. 152.CrossRefGoogle Scholar
Ambrosio, L., & Feng, J. (2014) On a class of first order Hamilton Jacobi equations in metric spaces. J. Differ. Equations 256(7), 21942245.CrossRefGoogle Scholar
Ambrosio, L., Gigli, N. & Savaré, G. (2005) Gradient Flows in Metric Spaces and in the Wasserstein Space of Probability Measures. Lectures in Mathematics, ETH Zurich, Birkhäuser.Google Scholar
Barton, A. & Ghoussoub, N. (2017) On Optimal Stochastic Ballistic Transports, arXiv:1712.00047, 18 pp.Google Scholar
Beiglböck, M. & JUILLET, N. (2016) On a problem of optimal transport under marginal martingale constraints. Ann. Probab. 44(1), 42106CrossRefGoogle Scholar
Bernard, P. & Buffoni, B. (2007) Optimal mass transportation and Mather theory. J. Eur. Math. Soc. 9(1), 85121.CrossRefGoogle Scholar
Brenier, Y. (1991) Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44, 375417.CrossRefGoogle Scholar
Boroushaki, S. & Ghoussoub, N. (2019) A self-dual variational approach to stochastic partial differential equations. J. Funct. Anal. 276(4), 12011243.CrossRefGoogle Scholar
Cardaliaguet, P., Delarue, F., Lasry, J.-M. & Lions, P.-L. (2019) The master equations and the convergence problem in Mean Field Games, Annals of Mathematics Studies (AMS-201), Princeton University Press, ISBN 9780691190709 (232 pp.)Google Scholar
Ekeland, I. & Téman, R. (1987) Convex Analysis and Variational Problems. Classics in Applied Mathematics, Vol. 28, Society for Industrial and Applied Mathematics.Google Scholar
Evans, L. C. & Gangbo, W. (1999) Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Amer. Math. Soc. 137, 166.Google Scholar
Fathi, A, & Figalli, A. (2010) Optimal transportation on non-compact manifolds. Isr. J. Math. 175(1), 159CrossRefGoogle Scholar
Gangbo, W. & Mccann, R. J. (1996) The geometry of optimal transportation. Acta Math. 177, 113161.CrossRefGoogle Scholar
Gangbo, W. & Swiech, A. (2015) Existence of a solution to an equation arising from the theory of Mean Field Games. J. Differ. Equations 259(11), 65736643.CrossRefGoogle Scholar
Ghoussoub, N. (2017) Optimal Ballistic Transport and Hopf-Lax Formulae on Wasserstein Space, ArXiv e-print: 1705.05951.Google Scholar
Joukovskaia, T. (1991) Singularités de Minimax et Solutions Faibles d’Équations aux Dérivées Partielles. Thèse de Doctorat, Université de Paris VII, Denis Diderot.Google Scholar
Mikami, T. & Thieullen, M. (2006) Duality theorem for the stochastic optimal control problem. Stoch. Process. Appl. 116(12), 18151835CrossRefGoogle Scholar
Monge, G. (1781) Mémoire sur la Théorie des Déblais et des Remblais. Hist. de l’Acad. Des Sciences de Paris, Paris, 666704.Google Scholar
Sudakov, V. N. (1979) Geometric problems in the theory of infinite-dimensional probability distributions. Proc. Steklov Inst. Math. 141, 1178.Google Scholar
Rockafellar, R. T. (1971) Existence and duality theorems for convex problems of Bolza. Trans. Amer. Math. Soc. 159, 140.CrossRefGoogle Scholar
Rockafellar, R. T. & Wolenski, P. R. (2001) Convexity in Hamilton-Jacobi theory I: dynamics and duality. SIAM J. Control Opt. 39, 13231350.CrossRefGoogle Scholar
Rockafellar, R. T. & Wolenski, P. R. (2001) Convexity in Hamilton-Jacobi theory II: envelope representations. SIAM J. Control Opt. 39, 13511372.CrossRefGoogle Scholar
Schachter, B. (2017) An Eulerian Approach to Optimal Transport with Applications to the Otto Calculus, Thesis, U. of Toronto.Google Scholar
Villani, C. (2004) Topics in mass transportation. In: Graduate Studies in Mathematics, Vol. 58, American Mathematical Society, Providence, RI.Google Scholar
Villani, C. (2005) Optimal Transport, Old and New, volume 338. Springer Science & Business Media, 2008.Google Scholar