Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T04:10:09.696Z Has data issue: false hasContentIssue false

Combustion Synthesis of Nanoscale Oxide Powders: Mechanism, Characterization and Properties

Published online by Cambridge University Press:  01 February 2011

Arvind Varma
Affiliation:
Department of Chemical and Biomolecular Engineering, and Center for Molecularly Engineered Materials, University of Notre Dame, Notre Dame, IN 46556, USA
Alexander S. Mukasyan
Affiliation:
Department of Chemical and Biomolecular Engineering, and Center for Molecularly Engineered Materials, University of Notre Dame, Notre Dame, IN 46556, USA
Kishori T. Deshpande
Affiliation:
Department of Chemical and Biomolecular Engineering, and Center for Molecularly Engineered Materials, University of Notre Dame, Notre Dame, IN 46556, USA
Pavol Pranda
Affiliation:
Department of Chemical and Biomolecular Engineering, and Center for Molecularly Engineered Materials, University of Notre Dame, Notre Dame, IN 46556, USA
Peter R. Erri
Affiliation:
Department of Chemical and Biomolecular Engineering, and Center for Molecularly Engineered Materials, University of Notre Dame, Notre Dame, IN 46556, USA
Get access

Abstract

Based on the analysis of extensive experimental data, we have formulated basic criteria necessary for the synthesis of a variety of oxides in the combustion mode, and defined optimum conditions for the production of high-surface area, well-crystalline nano-powders of desired phase composition and purity. Also, for the first time, detailed chemical mechanisms of interaction for various systems are identified, outlining specific roles of different fuels, oxidizers and thermal conditions

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pechini, M., U.S. Pat. No.3 330 697 (11 July, 1967).Google Scholar
2. Varma, A., Rogachev, A.S., Mukasyan, A.S. and Hwang, S., Adv. Chem. Eng. 24, 79 (1998).Google Scholar
3. Kingsley, J.J. and Patil, K.C., Mater. Lett. 6, 427 (1988).Google Scholar
4. Chick, L.A., Pederson, L.R., Maupin, G.D., Bates, J.L., Thomas, L.E. and Exarhos, G.J., Mater. Lett. 10, 6 (1990).Google Scholar
5. Patil, K.C., Aruna, S.T. and Ekambaram, S., Current Opinion in Solid State & Mater. Sci., 2, 158 (1997).Google Scholar
6. Mukasyan, A.S., Costello, C., Sherlock, K.P., Lafarga, D. and Varma, A., Sep. & Purif. Tech. 25, 117 (2001).Google Scholar
7. Deshpande, K.T., Mukasyan, A.S. and Varma, A., Chem. Mater. (in review).Google Scholar
8. Deshpande, K.T., Mukasyan, A.S. and Varma, A., J. Am. Ceram. Soc. 86, 1149 (2003).Google Scholar
9. Erri, P., Pranda, P. and Varma, A., Ind. Eng. Chem. Res. (in review).Google Scholar
10. Wieczorek-Ciurowa, K. and Kozak, A.J.. J. Thermal. Anal. Calor. 58, 647(1999).Google Scholar
11. Varma, A., Morbidelli, M., and Wu, H., Parametric Sensitivity in Chemical Systems, (Cambridge University Press, New York, 1999) p. 36.Google Scholar
12. Thiers, L., Mukasyan, A.S., Varma, A., Combust. Flame 131, 198 (2002).Google Scholar
13. Mori, M., Hiei, Y. and Sammes, N.M., Solid State Ionics 123, 103 (1999).Google Scholar
14. Chick, L.A., Liu, J., Stevenson, J.W., Armstrong, T.R., McCready, D.E., Maupin, G.D., Coffey, G.W., and Coyle, C.A., J. Am. Ceram. Soc. 80, 2109 (1997).Google Scholar
15. Takeuchi, T., Takeda, Y., Funahashi, R., Aihara, T., Tabuchi, M., and Kageyama, H., J. Electrochem Soc. 147, 3979 (2000).Google Scholar
16. Minh, N.Q., J. Am. Ceram. Soc. 76, 563 (1993).Google Scholar
17. Yasuda, I. and Hishinuma, M., Solid State Ionics, 80, 141 (1995).Google Scholar
18. Mori, M., Yamamoto, T., Itoh, H., and Watanabe, T., J. Mat. Sci. 32, 2423 (1997).Google Scholar
19. Yang, Y., Wen, T., Tu, H., Wang, D., and Yang, J., Solid State Ionics 135, 475 (2000)Google Scholar
20. Weber, W.J., Griffin, C.W. and Bates, J.L., J. Am. Ceram. Soc. 70, 265 (1987).Google Scholar
21. Suzuki, M., Sasaki, H., and Kajimura, A., Solid State Ionics 96, 83 (1997).Google Scholar
22. Chen, C.H., Bouwmeester, H.J.M., van Doorn, R.H.E., Kruidhof, H. and Burggraaf, A.J., Solid State Ionics 98, 7 (1997).Google Scholar
23. Itoh, N., Kato, T., Uchida, K. and Haraya, K., J. Memb. Sci. 92, 239 (1994).Google Scholar
24. Taspinar, E. and Tas, A.C., J. Am. Ceram. Soc. 80, 133 (1997).Google Scholar
25. Chou, Y.S., Stevenson, J. F., Armstrong, T.R. and Pederson, L.R., J. Am. Ceram. Soc. 83, 1457 (2000).Google Scholar
26. CRC Handbook of Chemistry and Physics, 78th edition, Edited by Lide, D.R. (CRC Press LLC Publishers, NewYork 19971998) p. 3173, 4–98.Google Scholar