Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T13:29:25.378Z Has data issue: false hasContentIssue false

The Atomic, Electronic and Defect Structure of the Dynamically Formed Cu2O/Cu Interfaces

Published online by Cambridge University Press:  01 February 2011

Xuetian Han
Affiliation:
xuh3@pitt.edu, University of Pittsburgh, Mechinical Engineering and Materials Science, 848 Benedum Hall, Pittsburgh, PA, 15261, United States, 4126249753, 4126248069
Judith C. Yang
Affiliation:
JYang@engr.pitt.edu, University of Pittsburgh, Mechinical Engineering and Materials Science, 848 Benedum Hall, Pittsburgh, PA, 15261, United States
Get access

Abstract

To gain fundamental insights into metal oxidation, the dynamically formed Cu/Cu2O interface was investigated by cross-sectional TEM (Transmission Electron Microscopy) methods. Copper (001) films were oxidized in oxygen within a UHV chamber to create Cu2O islands that formed epitaxially with respect to the Cu film. The cross-sectional Cu2O/Cu TEM sample was prepared by dual beam (DB) focused ion beam (FIB) instrument and the interface was probed by high-resolution TEM (HREM) and electron energy loss spectrum (EELS). It is found that Cu2O {110} layer distance significantly decreases from the interface area to the bulk Cu2O region, which is about 3∼4 unit cell thickness in Cu2O side; while the {100Cu2O layer distance increases with increasing distance from the interface region. The chemical Cu/Cu2O interface thickness has been measured with EELS analysis, which is about 2nm where the oxidation state of Cu gradually changes from Cu0 to Cu+1. This transition region indicates the area where Cu/Cu2O interface exists and suggests the existence of metastable Cu oxides. The Cu2O island growth mechanism of predominantly anion interfacial diffusion at the initial stage oxidation has been proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Zhou, G., and Yang, J.C., Applied Surface Science 210, 165(2003).10.1016/S0169-4332(03)00159-4Google Scholar
[2] Yang, J.C., Bharadwaj, M.D., Zhou, G.W., and Tropia, L., Microscopy and Microanalysis, 7(6), 486(2001).Google Scholar
[3] Yang, J.C., Evan, D., and Tropia, L., Applied physics letters 81(2), 241(2002).10.1063/1.1492007Google Scholar
[4] Zhou, G.W., Yang, J. C., Applied Surface Science 210/3-4, 165(2003)10.1016/S0169-4332(03)00159-4Google Scholar
[5] Benedek, R., Seidman, D.N., Yang, L.H., Microscopy and Microanalysis 3, 333(1997).10.1017/S1431927697970252Google Scholar
[6] Muller, S.D.A. D, A, Benedek, R, Yang L, H, Lilcox, J, and Seidman D, N, Physical Review Letter 80, 4741(1998)10.1103/PhysRevLett.80.4741Google Scholar
[7] Zalar, A., Baretzky, B.M.M., Hofmann, S., Ruhle, M., Panjan, P., Thin Solid Films 352, 51(1999).10.1016/S0040-6090(99)00352-1Google Scholar
[8] Muller, D.A., Sorsch, T., Moccio, S., Baumann, F.H., Evans-Lutterodt, K., Timp, G., Nature 399, 758(1999).Google Scholar
[9] Hasegawa, H., Koyama, Y., Hashizume, T., Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 38, 2634(1999).10.1143/JJAP.38.2634Google Scholar
[10] Muller, D.A., Mills, M.J., Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 260, 12(1999).10.1016/S0921-5093(98)00979-4Google Scholar
[11] Chisholm, M.F., Maiti, A., Pennycook, S.J., Pantelides, S.T., Phy. Rev Letters 81, 132(1998).10.1103/PhysRevLett.81.132Google Scholar
[12] Ernst, F., Recnik, A., Langjahr, P.A., Nellist, P.D., Ruhle, M., Acta Materialia 47, 183(1998).10.1016/S1359-6454(98)00334-6Google Scholar
[13] McGibbon, M.M., Browning, N.D., Science 266, 102(1994).10.1126/science.266.5182.102Google Scholar
[14] Merkle, K.L., Physical Review Letters 59, 2887(1987).10.1103/PhysRevLett.59.2887Google Scholar
[15] Muller, D.A., Physical Review B 58, 5989(1998).10.1103/PhysRevB.58.5989Google Scholar
[16] Yang, J.C., Nadarzinski, K., Schumann, E., Ruhle, M., Scripta Metallurgica Et Materialia 33, 1043(1995).10.1016/0956-716X(95)00341-RGoogle Scholar
[17] Yang, J.C., Schumann, E., Levin, I., Ruhle, M., Acta Materialia 46, 2195(1998).10.1016/S1359-6454(97)00378-9Google Scholar
[18] Yang, J.C., Schumann, E., Mullejans, H., Ruhle, M., J. of Phy. D-App. Phy. 29, 1716(1996).10.1088/0022-3727/29/7/006Google Scholar
[19] Ruhle, M., Schumann, E., High-Resolution Transmission Electron Microscopy of Metal/Metal Oxide Interfaces, London, Institute of Materials, (1993).Google Scholar
[20] Yang, J. C., Yeadon, M., Kolasa, B. and Gibson, J. M., App. Phy. L, 70 (26) 3522(1997)10.1063/1.119220Google Scholar
[21] Pieraggi, B., Hirth, J.P., Rapp, R. A., Acta Metall Mater 43, 1065(1995).Google Scholar
[22] Pieraggi, B., Rapp, R.A., Hirth, J.P., Oxidation of Metals 44, 63(1995).10.1007/BF01046723Google Scholar
[23] Scheu, C., Interface Science, Vol. 12, 127(2004)10.1023/B:INTS.0000012304.56861.68Google Scholar
[24] Guan, R., Hashimoto, H., and Yoshida, T., Acta Crystallographica B 40, 109(1984).10.1107/S0108768184001841Google Scholar
[25] Birks, N., Meier, G.H., and Pettit, F.S., Introduction to the High Temperature Oxidation of Metals. 2nd ed. 2006, Cambridge.10.1017/CBO9781139163903Google Scholar