Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T01:37:55.167Z Has data issue: false hasContentIssue false

Integration of Expanding Thermal Plasma deposited Hydrogenated Amorphous Silicon in Solar Cells

Published online by Cambridge University Press:  01 February 2011

B.A. Korevaar
Affiliation:
Delft University of Technology, DIMES, Feldmannweg 17, 2628 CT DELFT, The Netherlands Eindhoven University of Technology, Department of Applied Physics, P.O. Box 513, 5600 MB EINDHOVEN, The Netherlands
C. Smit
Affiliation:
Delft University of Technology, DIMES, Feldmannweg 17, 2628 CT DELFT, The Netherlands Eindhoven University of Technology, Department of Applied Physics, P.O. Box 513, 5600 MB EINDHOVEN, The Netherlands
A.M.H.N. Petit
Affiliation:
Delft University of Technology, DIMES, Feldmannweg 17, 2628 CT DELFT, The Netherlands
R.A.C.M.M. van Swaaij
Affiliation:
Delft University of Technology, DIMES, Feldmannweg 17, 2628 CT DELFT, The Netherlands
M.C.M. van de Sanden
Affiliation:
Eindhoven University of Technology, Department of Applied Physics, P.O. Box 513, 5600 MB EINDHOVEN, The Netherlands M.C.M.v.d.Sanden@tue.nl;
Get access

Abstract

A cascaded arc expanding thermal plasma is used to deposit intrinsic hydrogenated amorphous silicon at growth rates between 0.2 and 3 nm/s. Incorporation into a single junction p-i-n solar cell resulted in an initial efficiency of 6.7%, whereas all the optical and initial electrical properties of the individual layers are comparable with RF-PECVD deposited films. In this cell the intrinsic layer was deposited at 0.85 nm/s and at a deposition temperature of 250°C, which is the temperature limit for growing the p-i-n sequence. The cell efficiency is limited by the fill factor and using a buffer layer at the p-i interface deposited with RF-PECVD at low growth rate can increase this. The increase in fill factor is a result of a lower initial defect density near the p-i interface then obtained with the expanding thermal plasma, resulting in better charge carrier collection. To use larger growth rates, while maintaining the material properties, higher deposition temperatures are required. Higher deposition temperatures result in a smaller optical bandgap for the intrinsic layer and deterioration of the p-type layer, resulting in a lower opencircuit voltage. First results on applying a buffer layer will also be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. van de Sanden, M.C.M., Kessels, W.M.M., Severens, R.J. and Schram, D.C., Plasma Phys. Control. Fusion 41, A365 (1999).Google Scholar
2. Kessels, W.M.M., Leewis, C.M., Sanden, M.C.M. van de and Schram, D.C., J. Appl. Phys. 86, 40294039 (1999).Google Scholar
3. Kessels, W.M.M., Smets, A.H.M., Korevaar, B.A., Adriaenssens, G.J., Sanden, M.C.M. van de and Schram, D.C., Mat. Res. Soc. Symp. Soc. 557, 2530 (1999).Google Scholar
4. Kessels, W.M.M., Severens, R.J., van de Sanden, M.C.M., and Schram, D.C., J. of Non Cryst. Solids 227-230, 133137 (1998)3.Google Scholar
5. Severens, R.J., Kessels, W.M.M., Gabella, L., Pas, F. van de, van de Sanden, M.C.M., and Schram, D.C., Proc. of 13th Int. Symp. Plasma Chem., Beijing, 1059 (1997).Google Scholar
6. Korevaar, B.A., Smit, C., Zeman, M., Swaaij, R.A.C.M.M. van and van de Sanden, M.C.M., to be published.Google Scholar
7. Smit, C., Hamers, E.A.G., Korevaar, B.A., Swaaij, R.A.C.M.M. van and van de Sanden, M.C.M., J. Non. Cryst. Sol., accepted for publication.Google Scholar
8. Schropp, R.E.I. and Zeman, M., Amorphous and microcrystalline silicon solar cells, Kluwer Academic Publishers (1998) Boston/Dordrecht/London.Google Scholar
9. Mahan, A.H., Carapella, J., Nelson, B.P., Crandall, R.S. and Balberg, I., J. Appl. Phys. 69, 6728 (1991).Google Scholar
10. Brinza, M., Adriaenssens, G.J., Iakoubovskii, K., Stesmans, A., Kessels, W.M.M., Smets, A.H.M. and van de Sanden, M.C.M., submitted to J. Non Cryst. Sol.Google Scholar
11. Korevaar, B.A., Smets, A.H.M., Kessels, W.M.M., Adriaenssens, G., van de Sanden, M.C.M. and Schram, D.C., J. Non Cryst. Sol. 266-269, 380385 (1999).Google Scholar
12. Smets, A.H.M., Kessels, W.M.M. and van de Sanden, M.C.M., to be published.Google Scholar
13. Beyer, W., Mat. Res. Soc. Symp. Proc. 664, A9.2 (2001).Google Scholar
14. Korevaar, B.A., Petit, A.H.M.N., Smit, C., Swaaij, R.A.C.M.M. van and van de Sanden, M.C.M., to be presented at 29th IEEE-PVSC (2002).Google Scholar
15. Kessels, W.M.M., van de Sanden, M.C.M., and Schram, D.C., J. Vac. Sci. Techn. A 18, 21532165 (2000).Google Scholar
16. Korevaar, B.A., Smit, C., Sande, M.J.F. van de, Swaaij, R.A.C.M.M. van and van de Sanden, M.C.M., to be published.Google Scholar
17. Korevaar, B.A., Smit, C., Swaaij, R.A.C.M.M. van, Schram, D.C. and van de Sanden, M.C.M., Mat. Res. Soc. Symp. Proc. 664, A24.4 (2001).Google Scholar
18. Jackson, W.B., Biegelsen, D.K., Nemanich, R.J. and Knights, J.C., Appl. Phys. Lett. 42, 105107 (1983).Google Scholar
19. Mahan, A.H., Reedy, R.C., Iwaniczko, E., Wang, Q., Nelson, B.P., Xu, Y., Gallagher, A.C., Branz, H.M., Crandall, R.S., Yang, J. and Guha, S., Mat. Res. Soc. Symp. Proc. 507, 119124 (1998).Google Scholar