Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T11:34:39.494Z Has data issue: false hasContentIssue false

Interactions Of Evaporated Nickel And Silicon Thin Films

Published online by Cambridge University Press:  26 February 2011

L. R. Zheng
Affiliation:
Department of Materials Science and Engineering, Cornell Univercity, Ithaca, NY14853
L. S. Hung
Affiliation:
Department of Materials Science and Engineering, Cornell Univercity, Ithaca, NY14853
J. W. Mayer
Affiliation:
Department of Materials Science and Engineering, Cornell Univercity, Ithaca, NY14853
Get access

Abstract

Interactions of evaporated Ni and Si thin films were investigated by a combination of backseat tering spectrometry and transmission electron microscopy. The presence of amorphous Si has no significant effects on Ni2Si and NiSi formation, but it drastically lowers the formation temperature of NiSi. Experiments with evaporated thin markers established that Ni is the dominant diffusing species in the growth of the three suicides. The stability of NiSi was examined by sequential evaporation of Ni34Si66 and Ni50Si50 thin films both on Si(100) and on evaporated Si substrates. The results showed that NiSi2 grows at the expence of NiSi when the stucture is in contact with evaporated Si, while it dissociates into NiSi and Si when in contact with single crystal Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for example, Ottaviani, G. and Mayer, J. W., in Reliability and Degradation,edited by Howes, M. J. and Morgan, D. V. (Wiley, New York, 1981).Google Scholar
2. Olowolafe, J. O., Nicolet, M-A. and Mayer, J. W., Thin Soid Films 38, 143(1976).Google Scholar
3. Scott, D. M. and Nicolet, M-A., Phys. Stat. Sol. (a) 66, 773 (1981).Google Scholar
4. Tu, K. N., Alessandrini, E. I., Chu, W. K., Krautle, H. and Mayer, J. W., Japan. J. Appl. Phys. Suppl. 2, 669 (1974).Google Scholar
5. Chu, W. K., Lau, S. S., Mayer, J. W., and Muller, H., Thin Solid Films 25, 393 (1975).Google Scholar
6. Finstad, T. G., Mayer, J. W., and Nicolet, M-A., Thin Solid Films 51, 391 (1978).Google Scholar
7. d'Heurle, F., Petersson, S., Stolt, L., and Strizker, B., J. Appl. Phys. 53, 5678 (1982).Google Scholar
8. Baglin, J. E. E., Atwater, H. A., Gupta, D. and d'Heurle, F., Mat. Res. Soc. Symp. Proc. 10, 263 (1982).Google Scholar
9. Hung, L. S. and Mayer, J. W., Thin Solid Films 109, 85 (1983).Google Scholar
10. Lien, C. D., Nicolet, M-A., and Lau, S. S., Phys. Stat. Sol.(a) 81, 123 (1984).Google Scholar
11. Hung, L. S., Mayer, J. W., Pai, C. S. and Lau, S. S., J. Appl. Phys. 58, 1527 (1985).Google Scholar
12. Cahoon, E. C., Comrie, C. M. and Pretorius, R., Appl. Phys. Lett. 44, 511 (1984).Google Scholar
13. Cahoon, E. C., Comrie, C. M. and Pretorius, R., Mat. Res. Soc. Symp. Proc. 25, 57 (1984).Google Scholar
14. Baglin, J., d'Heule, F., and Petersson, S., Elec. Chem. Soc. Sym. Vol. 80–2, 341 (1980).Google Scholar
15. Pretorius, R., Harris, J. M., and Nicolet, M-A., Solid State Electronics 21, 667 (1978).Google Scholar