Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T23:32:27.767Z Has data issue: false hasContentIssue false

Metal-Organic Chemical Vapor Deposition of Metal Oxides: from Precursor Synthesis to Thin Films

Published online by Cambridge University Press:  10 February 2011

J. A. Belot
Affiliation:
Department of Chemistry, tjmarks@casbah.acns.nwu.edu
A. Wang
Affiliation:
Department of Chemistry, tjmarks@casbah.acns.nwu.edu
N. L. Edleman
Affiliation:
Department of Chemistry, tjmarks@casbah.acns.nwu.edu
J. R. Babcock
Affiliation:
Department of Chemistry, tjmarks@casbah.acns.nwu.edu
M. V. Metz
Affiliation:
Department of Chemistry, tjmarks@casbah.acns.nwu.edu
T. J. Marks
Affiliation:
Department of Chemistry, tjmarks@casbah.acns.nwu.edu
P. R. Markworth
Affiliation:
Department of Materials Science and Engineering Materials Research Center, Northwestern University, Evanston, IL 60208–3113, USA
R. P. H. Chang
Affiliation:
Department of Materials Science and Engineering Materials Research Center, Northwestern University, Evanston, IL 60208–3113, USA
Get access

Abstract

This contribution describes the synthesis, characterization, and implementation of new lanthanide and main group metal-organic chemical vapor deposition precursors based on the 2,2-dimethyl-5-N-2-methoxyethylimino-3-hexanonato ligand system. The new homoleptic, fluorinefree, low melting, and highly volatile complexes are ideally suited for oxide MOCVD, and in many applications are superior to standard β-diketonates while maintaining ease of synthesis and low cost. This is explicitly demonstrated by the growth of high quality CeO2/YBa2Cu3O7-δ multilayers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] (a) Jarzebski, Z. M., Phys. Status Solidi A 71, p. 13 (1982). (b) C. G. Granquist, Appl. Phys. A, 52, p. 83 (1991)10.1002/pssa.2210710102Google Scholar
[2] Jin, S., Teifel, T. H., McCormack, M., Fastnacht, R. A., Ramesh, R., and Chen, L. H., Science 264, p. 413 (1994)10.1126/science.264.5157.413Google Scholar
[3] (a) Jones, R. E., Solid State Technol., 40, p. 201 (1997). (b) D. E. Kotecki, Semicond. Int. 19, p. 109, (1996). (c) B. W. Wessels, Annu. Rev. Mater. Sci. 25, p. 525 (1995).Google Scholar
[4] McManus-Driscoll, J. L., Adv. Mater., 9, p. 457 (1997).10.1002/adma.19970090602Google Scholar
[5] (a) Leedham, T. J., Mat. Res. Soc. Symp. Proc. 415, p. 79, (1996). (b) T. J. Marks, Pure Appl. Chem. 67, p. 313, (1995).10.1557/PROC-415-79Google Scholar
[6] (a) Belot, J. A., Neumayer, D. A., Reddy, C. J., Studebaker, D. B., Hinds, B. J., Stern, C. L., and Marks, T. J., Chem. Mater. 9, p. 1638 (1997). (b) D. L. Schulz, B. J. Hinds, D. A. Neumayer, C. L. Stern, and T. J. Marks, Chem. Mater. 5, p. 1605 (1993).10.1021/cm9700108Google Scholar
[7] (a) McAleese, J., Plakatouras, J. C., and Steele, B. C. H., Thin Solid Films, 280, p. 152 (1996). (b) M. Becht and T. Morishita, Chem. Vap. Deposition, 2, p. 191 (1996). (c) M. Becht, T. Gerfin, and K. H. Dahmen, Chem. Mater. 5, p. 137 (1993). (d) R. Hiskes, S. A. DiCarolia, R. D. Jacowitz, Z. Lu, R. S. Fiegelson, R. K. Route, and J. L. Young, J. Cryst. Growth, 128, p. 7 8 1 (1993). (e) T. Gerfin, M. Becht, and K. H. Dahmen, Ber. Bunsenges. Phys. Chem. 95, p. 1564 (1991).10.1016/0040-6090(95)08193-3Google Scholar
[8] (a) Norton, D. P., Goyal, A., Budai, J. D., Christen, D. K., Kroeger, D. M., Specht, E. D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C. E., Lee, D. F., Sales, B. C., and List, F. A., Science, 274, p. 755 (1996). (b) X. D. Wu, R. C. Dye, R. E. Muenchansen, S. R. Foltyn, M. Maley, A. D. Rollet, A. R. Garcia, and N. S. Nogar, Appl. Phys. Lett. 58, p. 2165 (1991).10.1126/science.274.5288.755Google Scholar
[9] (a) Edwards, D. D., Mason, T. O., Goutenoire, F., and Poeppelmeier, K. R., Appl. Phys. Lett. 70, p. 1706 (1997). (b) D. D. Edwards, P. E. Folkins, and T. O. Mason, J. Amer. Ceram. Soc. 80, p. 253 (1997).10.1063/1.118676Google Scholar
[10] Tris(bis[trimethylsilyl]amido)lanthanide complexes are well known, see: Bradley, D. C., Ghorta, J. S., and Hart, F. A., J. Chem. Soc. Dalton Trans. p. 1021 (1973).Google Scholar
[11] Commercially available from Aldrich Chemical Company, Milwaukee, WI 53233.Google Scholar
[12] Hinds, B. J., McNeely, R. J., Studebaker, D. L., Marks, T. J., Hogan, T. P, Schindler, J. L., Kannewurf, C R., Zhang, X. F., and Miller, D., J. Mater. Res. 12, p. 1214 (1997).10.1557/JMR.1997.0171Google Scholar
[13] Duray, S. J., Buchholz, D. B., Song, S. N., Richeson, D. S., Ketterson, J. B., Marks, T. J., and Chang, R. P. H., Appl. Phys. Lett. 59, p. 1503 (1991).10.1063/1.105301Google Scholar
[14] Complete crystallographic data for both Ce(miki) 3 and Sn(miki) 2 has been deposited at the Canbridge Structure Database.Google Scholar
[15] Schoeller, W. W., Sundermnn, A., and Reither, M., Inorg. Chem. 38, p. 29 (1999).10.1021/ic9808201Google Scholar