Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-06T00:03:43.659Z Has data issue: false hasContentIssue false

Roles of Impurities and Implantation Depth on He+- Cavity Shape in Silicon

Published online by Cambridge University Press:  01 February 2011

Gabrielle Regula
Affiliation:
Laboratoire TECSEN CNRS UMR-6122, Aix-Marseille III, Service 151, Marseille, F-13397
Rachid El Bouayadi
Affiliation:
Laboratoire TECSEN CNRS UMR-6122, Aix-Marseille III, Service 151, Marseille, F-13397
Maryse Lancin
Affiliation:
Laboratoire TECSEN CNRS UMR-6122, Aix-Marseille III, Service 151, Marseille, F-13397
Esidor Ntsoenzok
Affiliation:
Laboratoire TECSEN CNRS UMR-6122, Aix-Marseille III, Service 151, Marseille, F-13397
Bernard Pichaud
Affiliation:
Laboratoire TECSEN CNRS UMR-6122, Aix-Marseille III, Service 151, Marseille, F-13397
Marie-Odile Ruault
Affiliation:
Laboratoire TECSEN CNRS UMR-6122, Aix-Marseille III, Service 151, Marseille, F-13397
Get access

Abstract

Silicon samples were implanted with He+ ions at energies varying from 10keV to 1.55MeV using doses ranging from 1.45×1016 cm-2 to 5×1016cm-2 to obtain similar He concentration at each projection range (Rp). In few samples, gold, platinum, nickel or silver was introduced prior to He+ implantation by diffusion at temperatures ranging from 870°C to 1050°C. All samples were annealed in the 400°C–1050°C temperature range to determine the equilibrium stage of the growth of the cavity. The cavity characteristics (distribution, shape and size) were studied by cross section transmission electron microscopy (XTEM). Their morphology demonstrates the validity of the chemisorption hypothesis when they grow in silicon intentionally contaminated by metal. A consequence of the surface proximity on the cavity characteristics was verified and allows stepping forward two regimes of cavity growth: one, very fast, taking place in a He-free environment and another one, slower, occurring in a He-rich atmosphere.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Raineri, V., J. Appl. Phys. 78 3727 (1995)Google Scholar
2 Eaglesham, D. J., White, A. E., Feldman, L. C., Moriya, N., Jacobson, D. C., Phys. Rev. Letters, 70, 1643 (1993)Google Scholar
3 Myers, S. M., Petersen, G. A., Seager, C. H., J. Appl. Phys. 80 7 (1996)Google Scholar
4 Grisolia, J., Claverie, A., Ben Assayag, G., Godey, S., Ntsoenzok, E., Labhom, F., Veen, A. Van, J. Appl. Phys. 91 (2002)Google Scholar
5 Jung, P., Nucl. Instrum. Methods Phys. Res. B 91, 362 (1994)Google Scholar
6 Atalo, M., Puska, M. J., Nieminen, R. M., Phys. Rev. B. 46 12 806 (1992)Google Scholar
7 Corni, F., Nobili, C., Ottaviani, G., Tonini, R., Calzolari, G., Cerofolini, G. F., Queirolo, G., Phys. Rev. B56 7331 (1997)Google Scholar
8 Estreicher, S. K., Weber, J., Derecskei-Kovacs, A., Marynick, D.S., Phys. Rev. B 55 (1997)Google Scholar
9 Raineri, V., Coffa, S., Szilagyi, E., Gyulai, J., Rimini, E, Phys. Rev. B (2000)Google Scholar
10 Corni, F., Calzolari, G., Frabboni, S., Nobili, C., Ottaviani, G., Tonini, R., J. Appl. Phys. 85 1401 (1999)Google Scholar
11 Veen, A. Van, Schut, H., Hakvoort, R. A., Fedorov, A., and Westerduin, K. T., Mater. Res. Soc. Symp. Proc. 373, 499 (1995)Google Scholar
12 Evans, J. H., Nuclear Instruments and methods in Physics Research B 196 125134 (2002)Google Scholar
13 Schroeder, H., Fichtner, P.F.P., Trinkaus, H., “Fundamental Aspects of Inert Gases in Solids” éd. Donnelly, S.E. et Evans, J.H., plenum press, New York, vol 279 (1991)Google Scholar
14 Vishnyakov, V. M., Donnelly, S.E., Carter, G., Birtcher, R.C., Haworth, L and Terry, J, Workshop on semiconductor defect engineering, Orléans, France, (2002)Google Scholar
15 Godey, S., Ph. D thesis, Université d'Orléans (1999)Google Scholar
16 Roqueta, F., Grob, A., Grob, J.J., Jérisian, R., Stoquert, J.P., Ventura, L., Nucl. Inst. And Meth. In Phys. Res. B147 298303 (1999)Google Scholar
17 Grisolia, J., Ph. D thesis, Université Paul Sabatier, Toulouse France (2000)Google Scholar
18 Bouayadi, R. El, Ph.D thesis, Université Aix Marseille, Marseille, France (2003)Google Scholar
19 Evans, J.H., Veen, A. Van, Griffioen, C.C., Nuclear Instruments and methods in Physics Research B 28 360363 (1987)Google Scholar
20 Regula, G., Bouayadi, R. El, Pichaud, B., Godey, S., Delamare, R., Ntsoenzok, E., Veen, A. Van, Mat. Res. Soc. Symp. Proc. Vol. 719 (2002)Google Scholar
21 Myers, S. M., Follstaedt, D. M., J. Appl. Phys. 79 3 (1996)Google Scholar
22 Bouayadi, R. El, Regula, G., Pichaud, B., Lancin, M., Dubois, C., Ntoenzok, E., Phys. Stat. Sol.(b), 222, 319 (2000)Google Scholar
23 Follstaedt, M., Myers, S.M., Petersen, G.A., and Medernach, J.W., J. Electron. Mater. 25, 157 (1996)Google Scholar
24 , Wong-leung, Nygren, E. and Williams, J.S., Appl. Phys. Lett. 67, 416 (1995)Google Scholar
25 Schiettekatte, F., Wintgens, C., Roorda, S., Appl. Phys. Lett., 74, 13, 1857 (1999)Google Scholar
26 Kern, R., Müller, P., J. Cryst. Growth, 146, 193 (1995)Google Scholar
27 Grisolia, J., Claverie, A., Assayag, G. Ben, Godey, S., Ntsoenzok, E., Labhom, F., Veen, A. Van, J. Appl. Phys. 91 (2002)Google Scholar