Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T09:49:08.390Z Has data issue: false hasContentIssue false

TiO2 Macroscopic Fibers Bearing Outstanding Photocatalytic Properties Obtained through an Integrative Chemistry-Based Scale-Up Semi-Industrial Process

Published online by Cambridge University Press:  19 May 2015

Natacha Kinadjian
Affiliation:
Centre de Recherche Paul Pascal, UPR 8641-CNRS, Université de Bordeaux, 115 Avenue Albert Schweitzer, 33600 Pessac, France.
Mickael le Bechec
Affiliation:
IPREM-UMR CNRS 5254, Université de Pau et des Pays de l’Adour, Hélioparc-2 Av. du Président Angot, F-64053 Pau Cedex 09, France.
Wilfrid Neri
Affiliation:
Centre de Recherche Paul Pascal, UPR 8641-CNRS, Université de Bordeaux, 115 Avenue Albert Schweitzer, 33600 Pessac, France.
Philippe Poulin
Affiliation:
Centre de Recherche Paul Pascal, UPR 8641-CNRS, Université de Bordeaux, 115 Avenue Albert Schweitzer, 33600 Pessac, France.
Sylvie Lacombe
Affiliation:
IPREM-UMR CNRS 5254, Université de Pau et des Pays de l’Adour, Hélioparc-2 Av. du Président Angot, F-64053 Pau Cedex 09, France.
Rénal Backov
Affiliation:
Centre de Recherche Paul Pascal, UPR 8641-CNRS, Université de Bordeaux, 115 Avenue Albert Schweitzer, 33600 Pessac, France.
Get access

Abstract

In here we depict the morphogenesis and associated properties of TiO2-based macroscopic fibers designed for the photodecomposition of volatile organic compounds (VOC). We employed a continuous industrially scalable extrusion-based process making the use of hybrid sols of amorphous titania nanoparticles, polyvinyl alcohol (PVA) and occasionally latex nanoparticles. This process allowed for the continuous generation of hybrid TiO2/latex/PVA or TiO2/PVA macroscopic fibers. Upon thermal treatment, biphasic porous fibers are obtained containing the anatase phase of TiO2 with 10-15% of brookite. These fibers, which can be manufactured under several hundred meter of length, are offering significantly improved phototocatalytic efficiency now comparable to the commercial Quartzel®PCO photocatalyst for gas-phase acetone mineralization.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ravelli, D., Dondi, D., Fagnoni, M., Albini, A., Chem. Soc. Rev. 38, 1999 (2009).CrossRefGoogle Scholar
Teoh, W. Y., Scott, J. A., Amal, R., J. Phys. Chem. Lett. 3, 629 (2012).CrossRefGoogle Scholar
Tang, X., Li, D., Langmuir 27, 1218 (2011).CrossRefGoogle Scholar
Carp, O., Huisman, C. L., Releer, A., Prog. Solid State Chem. 32, 33 (2004).CrossRefGoogle Scholar
Kelly, S., Pollak, F. H., Tomkiewicz, M., J. Phys. Chem. B 101, 2730 (1997).CrossRefGoogle Scholar
Mohapatra, P., Mishra, T., Parida, K., Appl. Catal. A Gen. 310, 183 (2006).CrossRefGoogle Scholar
Bannat, L., Wessels, K., Oekermann, T., Rathousky, J., Bahnemann, D., Wark, M., Chem. Mater. 21, 1645 (2009).CrossRefGoogle Scholar
Caruso, R. A., Schattka, J. H., Greiner, A., Adv. Mater. 13, 1577 (2001).3.0.CO;2-S>CrossRefGoogle Scholar
Kinadjian, N., Le Bechec, M., Henrist, C., Prouzet, E., Lacombe, S., Backov, R., ACS Appl. Mater. Interfaces, 6, 11211 (2014).CrossRefGoogle Scholar
Bettoni, M., Candori, P., Falcinelli, S., Marmottini, F., Meniconi, S., Rol, C., Sebastiani, G. V., J. Photochem. Photobiol. A: Chem. 268, 1 (2013).CrossRefGoogle Scholar
Taranto, J., Frochot, D., Pichat, P. Ind. Eng. Chem Res. 48, 6229 (2009).CrossRefGoogle Scholar
Kontos, A. G., Katsanaki, A., Likodimos, V., Maggos, T., Kim, D., Vasilakos, C., Dionysiou, D., Schmuki, P., Falaras, P. Chem. Eng. J. 179, 151 (2012).CrossRefGoogle Scholar