Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T10:28:05.120Z Has data issue: false hasContentIssue false

Determination of the Density of States on N-type Ptcdi-c13 Organic Thin-film Semiconductor

Published online by Cambridge University Press:  09 January 2013

J. Puigdollers
Affiliation:
Dept Enginyeria Electrònica, Univ. Politècnica Catalunya, Jordi Girona 1-3, Barcelona-08034, SPAIN Center of Research in Nanoengineering, Univ. Politècnica Catalunya, Barcelona-08028, SPAIN
A. Marsal
Affiliation:
Dept Enginyeria Electrònica, Univ. Politècnica Catalunya, Jordi Girona 1-3, Barcelona-08034, SPAIN
S. Galindo
Affiliation:
Dept Enginyeria Electrònica, Univ. Politècnica Catalunya, Jordi Girona 1-3, Barcelona-08034, SPAIN
P. Carreras
Affiliation:
Dept Física Aplicada I Òptica, Univ. Barcelona, Avda Diagonal 647, Barcelona-08028SPAIN
C. Voz
Affiliation:
Dept Enginyeria Electrònica, Univ. Politècnica Catalunya, Jordi Girona 1-3, Barcelona-08034, SPAIN
J. Bertomeu
Affiliation:
Dept Física Aplicada I Òptica, Univ. Barcelona, Avda Diagonal 647, Barcelona-08028SPAIN
R. Alcubilla
Affiliation:
Dept Enginyeria Electrònica, Univ. Politècnica Catalunya, Jordi Girona 1-3, Barcelona-08034, SPAIN Center of Research in Nanoengineering, Univ. Politècnica Catalunya, Barcelona-08028, SPAIN
Get access

Abstract

In this paper we study the density of states in n-type N,N’-ditridecylperylene-3,4,9,10-tetracarboxylic diimide organic semiconductor using two different methods. The first one is based on the temperature dependence of the channel conductance in field-effect transistors. The second one is based on the subgap optical absorption coefficient measured using the Photothermal Deflection Spectroscopy technique. Both techniques allow estimating the distribution of localized states in the band gap of the semiconductor.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Klauk, H., Halik, M., Zschieschang, U., Schmid, G., Radlik, W. and Weber, W., J. Appl. Phys. 92 5259 (2002).CrossRefGoogle Scholar
9.8% efficient small-molecule device made by Heliatek in 2012 http://www.heliatek.com/, (accessed 22.03.12).Google Scholar
Sueyoshi, T., Fukagawa, H., Ono, M., Kera, S., and Ueno, N., Appl. Phys. Lett. 95 183303 (2009).CrossRefGoogle Scholar
Tal, O., Rosenwaks, Y., Preezant, Y., Tessler, N., Chan, C. K., and Kahn, A., Phys. Rev. Lett. 95 256405 (2005).CrossRefGoogle Scholar
Matsui, H., Mishchenko, A. S., and Hasegawa, T., Phys. Rev. Lett. 104 056602 (2010).CrossRefGoogle Scholar
Krellner, C., Haas, S., Goldmann, C., Pernstich, K. P., Gundlach, D. J., and Batlogg, B., Phys. Rev. B 75 245115 (2007).CrossRefGoogle Scholar
Nádaždy, V., Durný, R., Puigdollers, J., Voz, C., Cheylan, S. and Gmucová, K., App. Phys. Lett. 90, 092112 (2007).CrossRefGoogle Scholar
Lang, D.V., Chi, X., Siegrist, T., Sergent, A.M. and Ramirez, A.P., Phys. Rev. Lett. 93(8)086802 (2004).CrossRefGoogle Scholar
Chua, L-L., Zaumseil, J., Chang, J-F., Ou, E.C-W, Ho, P.K-H., Sirringhaus, H. and Friend, R.H., Nature 434 194 (2005).CrossRefGoogle Scholar
Gundlach, D.J., Pernstich, K.P., Wilckens, G., Grüter, M., Haas, S. and Batlogg, B., J. of Appl. Phys. 98 064502 (2005).CrossRefGoogle Scholar
Chesterfield, R.J., Mckeen, J.C., Newman, C.R., Frisbie, C.D., Ewbank, P.C., Mann, K.R. and Miller, L, J. Appl. Phys. 95 6396 (2004).CrossRefGoogle Scholar
Puigdollers, J., Della Pirriera, M., Marsal, A., Orpella, A., Cheylan, S., Voz, C. and Alcubilla, R., Thin-Solid Films 517 (23) 6271 (2009).CrossRefGoogle Scholar
Tatemichi, S., Ichikawa, M., Koyama, T. and Taniguchi, Y., Appl. Phys. Lett. 89 11210 (2006).CrossRefGoogle Scholar
Wen, Y., Liu, Y., Di, Ch., Wang, Y., Sun, X., Guo, Y., Zheng, J., Wu, W., Ye, S. and Yu, G., Adv. Mat. 21 1 (2009).CrossRefGoogle Scholar
Globus, T., Slade, H.C., Shur, M.S. and Hack, M., Mat. Res. Soc. Proc. 336 883 (1994).CrossRefGoogle Scholar
Butko, V.Y., Chi, X., Lang, D.V. and Ramirez, A.P., Appl. Phys. Lett. 83 4773 (2003).CrossRefGoogle Scholar
Kalb, W.L. and Batlogg, B., Phys. Rev. B81 035327 (2010).CrossRefGoogle Scholar
Jackson, W.B. and Amer, N.M., Phys. Rev. B25 5559 (1982).CrossRefGoogle Scholar
Street, R.A., 2005 Hydrogenated Amorphous Silicon (Ed. Cambridge University Press).Google Scholar
Stella, M., Voz, C., Puigdollers, J., Rojas, F., Fonrodona, M., Escarré, J., Asensi, J.M., Bertomeu, J. and Andreu, J., Journal of Non-Crystalline Solids 352 1663 (2006).CrossRefGoogle Scholar