Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T12:19:24.391Z Has data issue: false hasContentIssue false

Vanadium Oxide Nanostructures: Growth, Characterization and Applications

Published online by Cambridge University Press:  01 February 2011

Sanjay Mathur
Affiliation:
smathur@inm-gmbh.de, Leibniz-Institute of New Materials, Nanokrystalline Materials and Thin Film Systems, Im Stadtwald, Gebaeude D2 2, Saarbruecken, Saarland, 66041, Germany, +49 681 9300 279
Thomas Ruegamer
Affiliation:
ruegamer@inm-gmbh.de, Leibniz-Institute of New Materials, Nanocrystalline Materials and Thin Film Systems, Germany
Get access

Abstract

Vanadium oxide nanostructures (V2O5 and VO2) were obtained by chemical vapor deposition of the alkoxide precursor [VO(OPri)3]. The nanomaterials were studied with respect to their morphological features (HR-SEM) and phase structure (XRD) followed by characterization as resisitive-type gas sensors. Given the high surface area, vanadium oxide (VOx) nanostructures show significant sensor response via resistance change upon reaction induced by carbon monoxide and desorption of adsorbed oxygen at 400 °C. Tin-doped VOx showed enhanced sensitivity of the films which suggests a higher number of active sensing sites or alternations in the intrinsic electrical properties of VOx by addition of SnO2 as dopant.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Niederberger, M., Muhr, H.-J., Krumeich, F., Bieri, F., Guenther, D., Nesper, R., Chem. Mater. 12, 1995 (2000)Google Scholar
2 Pinna, N., Willinger, M., Weiss, K., Urban, J., Schlögl, R., Nano Letters 3, 8, 1131 (2003)Google Scholar
3 Pan, D., Shuyuan, Z., Chen, Y., Hou, J.G., J. Mater. Res. 17, 8, 1981 (2002)Google Scholar
4 Kim, H.Y., Viswanathamurthi, P., Bhattarai, N., Lee, D.R., Rev. Adv. Mater. Sci. 5, 216 (2003)Google Scholar
5 Lopez, R., Boatner, L.A., Haynes, T.E., Feldmann, L.C., Haglund, R.F. Jr, J. Appl. Phys. 92, 7, 4031 (2002)Google Scholar
6 Takahashi, K., Limmer, S.J., Wang, Y., Guozhong, C., J. Phys. Chem. B 108, 9795 (2004)Google Scholar
7 Ramana, C.V., Smith, R.J., Hussain, O.M., Chusuei, C.C., Julien, C.M., Chem. Mater. 17, 1213 (2005)Google Scholar
8 Manno, D., Serra, A., Micocci, G., Siciliano, T., Filippo, E., Tepore, A., J. Non-Cryst. Solids 341, 68 (2004)Google Scholar
9 Guinneton, F., Sauques, L., Valmalette, J.-C., Cros, F., Gavarri, J.-R., Thin Solid Films 446, 287 (2004)Google Scholar
10 Briand, L.E., Tkachenko, O.P., Guraya, M., Gao, X., Wachs, I.E., Gruenert, W., J. Phys. Chem B 108, 4823 (2004)Google Scholar
11 Baltes, M., Voort, P. van der, Weckhuysen, B. M., Rao, R.R., Catana, G., Schoonheydt, R.A., Vansant, E.F., Phys. Chem. Chem. Phys. 2, 2673 (2000)Google Scholar
12 Manning, T.D., Parkin, I.P., Clark, R.J.H., Sheel, D., Pemble, M.E., Vernadou, D., J. Mater. Chem. 12, 2936 (2002)Google Scholar
13 Xu, S., Ma, H., Dai, S., Jiang, Z., J. Mater. Sci. 39, 489 (2004)Google Scholar
14 Mathur, S., Barth, S., Shen, H., Pyun, J.C., Werner, U., Small 1, 7, 713 (2005)Google Scholar
15 Sberveglieri, G., Sens. Actuators B 6, 233 (1992)Google Scholar
16 Morrison, R.S., The Chemical Physics of Surfaces, Plenum Press, New York, (1977)Google Scholar