Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T20:54:37.553Z Has data issue: false hasContentIssue false

Extremely Thin Absorber Layers in Solid State Solar Cells

Published online by Cambridge University Press:  15 March 2011

A. Bellaidi
Affiliation:
Hahn-Meitner Instut Berlin, Glienicker Strasse 100, 14109 Berlin, Germany
K. Ernst
Affiliation:
Hahn-Meitner Instut Berlin, Glienicker Strasse 100, 14109 Berlin, Germany
R. Könenkamp
Affiliation:
Physics Department Portland State University Portland, OR. 97201, USA
Get access

Abstract

We report on recent progress in fabricating an inorganic solid state solar cell based on a nano-structured substrate with an extremely thin absorber, the so-called eta-cell. The cell uses HgCdTe as an absorber layer and TiO2 as a substrate. By adjusting the Hg/Cd ratio the conduction band edges in these two materials can be brought into alignment. This tuning provides an ideal tool to optimize the optical and electrical properties of the cell. In qualitative agreement with earlier work we find a band offset of 0.25 eV to give maximum transfer rates across the interface. The optimized cell has a short circuit current of 15 mA/cm2 and an open-circuit voltage of 0.6 V. We discuss the optical and electrical properties of the cell, and outline ideas to further improve the performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bach, U., Lupo, D., Moser, J. E., Weisörtel, F., Salbeck, J., Spreitzer, H., and Grätzel, M., Nature 395, 583 (1998)Google Scholar
2. Tennakone, K., Kumara, G. R. R. A., Kottegoda, I. R. M., Perera, V. P. S., and Aponsu, G. M. L. P., J. Phys. D: Appl. Phys. 31, 2326 (1998)Google Scholar
3. Ernst, K., Lux-Steiner, M. C., and Könenkamp, R., Proc. 16th Eur. Photovoltaic Solar Energy Conf., Glasgow, UK (2000), p. 63 Google Scholar
4. Deckman, H. W., Wronski, C. R., Witzke, H., and Yablonovitch, E., Appl. Phys. Lett. 42, 968 (1983)Google Scholar
5. Ernst, K., PhD thesis, Physics Department, Freie Universität Berlin (2001)Google Scholar
6. Neumann-Spallart, M., Tamizhmani, G. and Levy-Clement, C., J. Electrochem. Soc., 137 343 (1990)Google Scholar
7. Tiefenbacher, S., Pettenkofer, C. and Jaegermann, W., J. Appl. Phys. 91, 1984 (2002)Google Scholar
8. Herman, M. A. and Pessa, M., J. Appl. Phys. 57, 2671 (1985).Google Scholar
9. Hoyer, P. and Könenkamp, R., Appl. Phys. Lett 66, 349, 1995 Google Scholar