Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T15:15:53.744Z Has data issue: false hasContentIssue false

Excimer Laser Induced Crystallization of Amorphous Silicon-Germanium Films

Published online by Cambridge University Press:  15 February 2011

A. Slaoui
Affiliation:
Electrical Engineering and Applied Physics Dept.,Oregon Graduate Institute 20000 N.W. Walker Road, Portland, OR-97291–1000
C. Deng
Affiliation:
Electrical Engineering and Applied Physics Dept.,Oregon Graduate Institute 20000 N.W. Walker Road, Portland, OR-97291–1000
S. Talwar
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, CA-94305
J. K. Kramer
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, CA-94305
B. Prevot
Affiliation:
Laboratoire GRPM-PHASE,23 rue du Loess, F-67037 Strasbourg, France
T. W. Sigmon
Affiliation:
Electrical Engineering and Applied Physics Dept.,Oregon Graduate Institute 20000 N.W. Walker Road, Portland, OR-97291–1000
Get access

Abstract

Application of excimer laser crystallization of Amorphous silicon (a-Si) has introduced a new, interesting potential technology for the fabrication of polycrystalline (poly-Si) thin film transistors. We are currently studying polycrystalline Si1−xGex thin films in order to determine whether this material can lead to improved electrical properties or to better processing requirements when compared with polycrystalline Si films. In this work we analyze by RBS, TEM, Raman spectroscopy and surface reflectance, the structure of thin Amorphous Si1−xGex films after irradiation with a XeCl excimer laser. The Amorphous SiGe films were prepared by evaporation of Si and Ge onto oxidized Si substrates using an electron gun in vaccum. The effects of laser energy fluence during irradiation are investigated. The Amorphous to crystalline transition is followed by in-situ measurement of time-resolved reflectivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Serikawa, T., Shirai, S., Okamoto, A. and Suyama, S., IEEE Tans. Electron Dev. ED- 36, 1929 (1989)Google Scholar
2. Sameshima, T., Hara, M. and Usui, S., Jpn. J. Appl. Phys. 28, 1789 (1989)Google Scholar
3. Sera, K., Okumura, F., Uschida, H., Itoh, S., Kaneko, S. and Hotta, K., IEEE Tans. Electron Dev. ED- 36, 2868 (1989)Google Scholar
4. Winer, K., Anderson, G.B., Ready, S.E., Bachrach, R.Z., Johnson, R.I., Ponce, F.A. and Boyce, J.B., Appl. Phys. Lett. 57, 2222 (1990)Google Scholar
5. Fogarassy, E., Pattyn, H., Elliq, M., Slaoui, A., Prevot, B., Stuck, R., Unamuno, S. and Mathé, M.L., in Materials Surface Processing, E-MRS Symp. Proc. V32, p. 231, ed. by Stucke, M., Marinero, E. E. and Wishiyama, I., North-Holland, Amsterdam, 1993 Google Scholar
6. Brotherton, S.D., McCulloch, D.J., Clegg, J.B. and Gowers, J.P., IEEE Tans. Electron Dev. ED- 40, 407 (1993)Google Scholar
7. Chiang, A., Geis, M.W. and Pfeifer, L., MRS Symp. Proceeding V.53, (ed. MRS, Pittsburg, PA, 1986)Google Scholar
8. Zhang, H., Kusumato, N., Inushima, T. and Yamazaki, S., IEEE Tans. Electron Dev. Lett. EDL- 13, 297 (1992)Google Scholar
9. King, T.J., Pfister, J.R., Shott, J.D., McVittie, J.P. and Saraswat, K. C., IEDM Tech. Dig. 1990, p. 253 Google Scholar
10. King, T.J., Saraswat, K.C. and Pfister, J.R., IEEE Elect. Dev. Lett. V12. 584 (1991)Google Scholar
11. Crabbé, E.F., Comfort, J.H., Lee, W., Cressler, J.D., Meyerson, B.S., Megadanis, A.C., Sun, J.Y.C. and Stork, J.M.C., IEEE Elect. Dev. Lett. 13, 259 (1992)Google Scholar
12. Peercy, P.S., Thompsonand, M.O. Tsai, J.Y., Mater. Res. Soc. Symp. Proc., V74, 15 (1987)Google Scholar
Solis, J. and Afonso, C.N., J. Appl. Phys., 69, 2105 (1992)Google Scholar
13. Kim, H.J., Im, J.S. and Thompson, M.O., Mater. Res. Soc. Symp. Proc. V. 283, p. 703 Google Scholar
14. Thompson, M.O., Peercy, P.S., Tsao, T.Y. and Aziz, M.J., Appl. Phys. Lett, 49, 558 (1986)Google Scholar
15. Sameshima, T., Usui, S. and Sekiya, M.,, J. Appl. Phys. 62, 711 (1987)Google Scholar
16. Phillips, J.C., Bonds and Bands in Semiconductors. Academic Press, New York, 1973 Google Scholar
17. Humlicek, J., Garriga, M., Alonso, M.I. and Cardona, M., J. Appl. Phys. 65, 2827 (1989)Google Scholar
18. Nakano, N., Marville, L., Jang, S.M., Liao, H., Tsai, C., Tsai, J., Kim, H.W. and Reif, R., J. Appl. Phys. 73, 414 (1993)Google Scholar
19. Pattyn, H., Poortmans, J., Debenest, P., Caymax, C?., Vetter, P., Elliq, M., Fogarassy, E., Nenyer, Z., Nijs, J. and Mertens, R., ESSDERC'92, Leuven (Belgium) 1992 Google Scholar
20. Baeri, P., Campisano, S.U., Foti, G. and Rimini, E., Phys. Rev. Lett. 41, 1246 (1979)Google Scholar