Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T13:02:57.518Z Has data issue: false hasContentIssue false

Graphitic Carbon Nanoparticles from Asphaltenes

Published online by Cambridge University Press:  01 February 2011

Christophe Danumah
Affiliation:
National Institute for Nanotechnology and Department of Chemistry, Alberta Edmonton, Alberta T6G 2M9, Canada
Andrew J. Myles
Affiliation:
National Institute for Nanotechnology and Department of Chemistry, Alberta Edmonton, Alberta T6G 2M9, Canada
Hicham Fenniri
Affiliation:
National Institute for Nanotechnology and Department of Chemistry, Alberta Edmonton, Alberta T6G 2M9, Canada
Get access

Abstract

We report preliminary studies on the preparation of carbon nanoparticles (CNPs) of ~ 20 nm in diameter derived from asphaltenes under mild conditions. This transformation occurred upon heating a thin film of asphaltenes cast on a carbon coated copper grid under both nitrogen and oxygen atmosphere. The resulting CNPs were characterized by thermogravimetric analysis (TGA), scanning/transmission electron microscopy (SEM/STEM), transmission electron microscopy (TEM), elemental analysis (EA) and Auger electron spectroscopy (AES). The findings point towards asphaltenes, a crude oil by-product, as a potential source for carbon nanomaterials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Li, H., Xu, C., Srivastava, N., Banerjee, K., IEEE Trans. Elect. Dev. 56, 1799 (2009).Google Scholar
2. Ray, S.C., Saha, A., Jana, N.R., Sarkar, R., J. Phys. Chem. C 113, 18546 (2009).Google Scholar
3. Titirici, M.-M., Antonietti, M., Chem. Soc. Rev. 39, 103 (2010).Google Scholar
4. Prasad, K.E., Das, B., Maitra, U., Ramamurty, U., Rao, C.N.R., Proc. Nat. Acad. Sci, 106, 13186 (2009).Google Scholar
5. Sevilla, M., Sanchis, C., Valdes-Solis, T., Morallon, E., Fuertes, A.B., Phys, J.. Chem. C, 111, 9749 (2007).Google Scholar
6. Titirici, M.-M., Antonietti, M., Chem. Soc. Rev. 39, 103 (2010).Google Scholar
7. Liu, H., Ye, T., Mao, C., Angew. Chem. Int. Ed. 46, 6473 (2007).Google Scholar
8. Tian, L., Ghosh, D., Chen, W., Pradhan, S., Chang, X., Chen, S., Chem. Mater. 21, 2803 (2009).Google Scholar
9. Camacho-Bragado, G.A., Santiago, P., Marin-Almazo, M., Espinosa, M., Romero, E.T., Murgich, J., Lugo, V.R., Lozada-Cassou, M., Jose-Yacaman, M., Carbon 40, 2761 (2002).Google Scholar
10. Wang, X., Guo, J., Yang, X., Xu, B., Mater. Chem. Phys. 113, 821 (2009).Google Scholar
11. Groenzin, H., Mullins, O.C., Energy Fuels. 14, 677 (2000).Google Scholar
12. Rakotondradany, F., Fenniri, H., Rahimi, P., Gawrys, K.L., Kilpatrick, P.K. and Gray, M.R., Energy Fuels, 20, 2439 (2006).Google Scholar
13. Franklin, R.E., Acta Cryst. 4, 253 (1951).Google Scholar