Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T17:20:18.462Z Has data issue: false hasContentIssue false

Fabrication of Nanoimprint Stamps by Nanosphere Lithography

Published online by Cambridge University Press:  15 February 2011

Chun-Wen Kuo
Affiliation:
Institute of Applied Science and Engineering Research, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 115, Taiwan
Jau-Ye Shiu
Affiliation:
Institute of Applied Science and Engineering Research, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 115, Taiwan
Yi-Hong Cho
Affiliation:
Institute of Applied Science and Engineering Research, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 115, Taiwan
Peilin Chen
Affiliation:
Institute of Applied Science and Engineering Research, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 115, Taiwan
Get access

Abstract

Anovel scheme for the fabrication of large-area nanoimprint stamps has been developed based on the utilization of a combination of nanosphere lithography and reactive ion etching. Both single and double layer polystyrene beads have been employed to construct well-ordered, periodic silicon nanopillar arrays. The nanopillar arrays fabricated by this method have been successfully used as the stamps for nanoimprint lithography. Our result indicates that this approach is capable of producing large-area sub-50 nm periodic nanostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Poborchii, V.V., Tada, T., Kanayama, T., Appl. Phys. Lett., 75, 3276 (1999).Google Scholar
2. Yang, S.M., Ozin, G.A., Chem. Comm., 24, 2507 (2000).Google Scholar
3. Wanke, M.C., Lehmann, O., Muller, K., Wen, Q., Stuke, M., Science, 275, 1284 (1997).Google Scholar
4. Cheng, J.Y., Ross, C.A., Chan, V.Z.H., Thomas, E.L., Lammertink, R.G.H., Vancso, G.J., Adv. Mater., 13, 1174 (2001).Google Scholar
5. Hehn, M., Ounadjela, K., Bucher, J.P., Rousseaux, F., Decanini, D., Bartenlian, B., Chappert, C., Science, 272, 1782 (1996).Google Scholar
6. Krauss, P.R., Chou, S.Y., Appl. Phys. Lett. 71, 3174 (1997).Google Scholar
7. Haes, A.J., Van Duyne, R.P., J. Am. Chem. Soc., 124, 10596 (2002).Google Scholar
8. Lim, K.B., Park, S.J., Mirkin, C.A., Smith, J.C., Mrksich, M., Science, 295, 1702 (2002).Google Scholar
9. Haynes, C.L., Duyne, R.P. Van, J. Phys. Chem. B, 105, 5599 (2001).Google Scholar
10. Fischer, U.C., Zingsheim, H.P., J. Vac. Sci. Technol., 19, 881 (1981).Google Scholar
11. Deckman, H.W., Dunsmuir, J.H., J. Vac. Sci. Technol. B, 1, 1109 (1983).Google Scholar
12. Hulteen, J.C., Duyne, R.P. Van, J. Vac. Sci. Technol. A, 13,1553 (1995).Google Scholar
13. Micheletto, R., Fukuda, H., Ohtsu, M., Langmuir, 11, 3333 (1995).Google Scholar
14. Lenzman, F., Li, K., Kitai, A.H., Stover, H.D.H., Chem. Mater., 6, 156 (1994).Google Scholar
15. Boneberg, J., Burmeister, F., Schafle, C., Leiderer, R., Reim, D., Frey, A., Herminghaus, S., Langmuir, 13, 7080 (1997).Google Scholar
16. Vlasov, Y.A., Bo, X.Z., Sturm, J.C., Norris, D.J., Nature, 414, 289 (2001).Google Scholar
17. Braun, P.V., Wiltzius, P., Nature, 402, 603 (1999).Google Scholar
18. Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S.; Leonard, S.W., Lopez, C., Meseguer, F., Miguez, H., Mondia, J.P., Ozin, G.A., Toader, O., Driel, H.M. Van, Nature, 405, 437 (2000).Google Scholar
19. Chou, S.Y., Krauss, P.R., Renstrom, P.J., Science, 272, 85 (1996).Google Scholar
20. Chou, S.Y., Krauss, P.R., Zhang, W., Guo, L., Zhuang, L., J. Vac, Sci. Technol. B, 15, 2897 (1997).Google Scholar