Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T13:28:56.794Z Has data issue: false hasContentIssue false

Early Stages of Oxygen Clustering and Its Influence on Electrical Behavior of Silicon

Published online by Cambridge University Press:  15 February 2011

Gottlieb S. Oehrlein
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, N.Y., USA
James W. Corbett
Affiliation:
Institute for the Study of Defects in Solids, Physics Department, State University of New York at Albany, Albany, N.Y., USA
Get access

Abstract

Our knowledge of phenomena connected to the early stages of oxygen clusters, especially their electrical activity is reviewed. In addition to the well-known 450°C thermal donors, 'new oxygen donors', which occur in ca. 650°C annealing, have emerged in conjunction with low temperature processing for VLSI and are discussed. The existing models of thermal donors are reviewed. In a new model of thermal donor formation, thermal donors are viewed as metastable oxygen clusters which lower the compressive strain of the surrounding silicon matrix via bonding of 2p oxygen lone pair orbitals. It is shown how this bonding can result in shallow double donor states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Patel, J. R. in “Semiconductor Silicon 1977”, eds. Huff, H. R., and Sirtl, E. (Electrochem. Soc., Princeton, 1977), 521.Google Scholar
[2] Patel, J. R. in “Semiconductor Silicon 1981”, eds. Huff, H. R., Kriegler, R. J., Takeishi, Y. (Electrochem. Soc., Pennington, 1981), 189.Google Scholar
[3] Murgai, A., Patrick, W. J., Combronde, J., Felix, J. C., IBM J. Res. Develop. 26, 546 (1982).Google Scholar
[4] Craven, R. A., Op. Cit., Ref. 2, 254.Google Scholar
[5] Op. cit., Ref. 2.Google Scholar
[6] “Defects in Semiconductors”, eds. Narayan, J., and Tan, T. Y. (North-Holland, New York 1981).Google Scholar
[7] Schwuttke, G. H., Microelectron. Reliab. 9, 397 (1970).CrossRefGoogle Scholar
[8] Thebault, D., Jastrzebski, L., RCA Review 41, 592 (1980).Google Scholar
[9] Tice, W. K., Tan, T. Y., Appl. Phys. Lett. 28, 564 (1976).Google Scholar
[10] Tice, W. K., Tan, T. Y. in Ref. [6], 367.Google Scholar
[11] Kaiser, W., Frisch, H. L., Reiss, H., Phys. Rev. 112, 1546 (1958).CrossRefGoogle Scholar
[12] Gosele, U., Tan, T. Y., Appl. Phys. A 28, 79 (1982).Google Scholar
[13] Stavola, M., Patel, J. R., Kimerling, L. C., and Freeland, P. E., Appl. Phys. Lett. 42, 73 (1983).Google Scholar
[14] Kanamori, A., Kanamori, M., J. Appl. Phys. 50, 8095 (1979).Google Scholar
[15] Schmalz, K., Gaworzewski, P., phys. stat. sol. (a) 64, 151 (1981).Google Scholar
[16] Leroueille, J., phys. stat. sol. (a) 67, 177 (1981).Google Scholar
[17] Hu, S. M., J. Appl. Phys. 52, 3974 (1981).CrossRefGoogle Scholar
[18] Kishino, S., Matsushita, Y., Kanamori, M., lizuka, T., Jap. J. Appl. Phys. 21, 1 (1982).CrossRefGoogle Scholar
[19] Corbett, J. W., McDonald, R. S., and Watkins, G. D., J. Phys. Chem. Solids 25, 873 (1964).CrossRefGoogle Scholar
[20] Bosomworth, D. R., Hayes, W., Spray, A. R. L., and Watkins, G. D., Proc. Roy. Soc. A317, 133 (1970).Google Scholar
[21] Newman, R. C., “Infra-Red Studies of Crystal Defects”, (Barnes & Noble, London New York 1973).Google Scholar
[22] Pajot, B., Analysis 5, 293 (1977).Google Scholar
[23] Graff, K., Grallath, E., Ades, S., Goldbach, G., and Toelg, J., Solid-State Electr. 16, 887 (1973).Google Scholar
[24] Malyshev, V. A., Sov. Phys. Semicond. 8, 92 (1974).Google Scholar
[25] Ryzhkova, E. M., Traveznikova, I. I., Chelnokov, V. E., and Yakovenko, A. A., Sov. Phys. Semicond. 11, 628 (1977).Google Scholar
[26] Shimura, F., Tsuya, H., and Kanamura, T., Appl. Phys. Lett. 37, 483 (1980).Google Scholar
[27] Shimura, F., Ohnishi, Y., and Tsuya, H., Appl. Phys. Lett. 38, 867 (1981).CrossRefGoogle Scholar
[28] Jastrzebski, L., Zanzucchi, P., Thebault, D., and Lagowski, J., J. Electrochem. Soc, 129, 1638 (1982).Google Scholar
[29] Hrostowski, H. J., and Kaiser, R. H., J. Phys. Chem. Solids 9, 214 (1959).Google Scholar
[30] Mikkelsen, J. C., Appl. Phys. Lett. 40, 336 (1982).Google Scholar
[31] Takano, Y., and Maki, M. in “Semiconductor Silicon 1973”, eds. Huff, H. R., and Burgess, R. R. (Electrochem. Soc., Princeton, 1973), 469.Google Scholar
[32] Gaworzewski, P., and Ritter, G., phys. stat. solidi A 67, 511 (1981).Google Scholar
[33] Yatsurugi, Y., Akiyama, N., Endo, Y., and Nozaki, T., I. Electrochem. Soc. 120, 975 (1973).Google Scholar
[34] Murgai, A., Gatos, H. C., and Westdorp, W. A., J. Electrochem. Soc. 126, 2240 (1979).Google Scholar
[35] Abe, T., Harada, H., and Chikawa, J., Op. cit. Ref. [13] (to be published).Google Scholar
[36] Vieweg-Gutberlet, F. G. in “Spreading Resistance Symposium”, Nat. Bur. Stand. Spec. Publ;. 400–10 (1974), 185.Google Scholar
[37] Hu, S. M., J. Vac. Sci. Technol. 14, 17 (1977).Google Scholar
[38] Abe, T., Kikuchi, K., and Shirai, S., Op. cit., Ref. [1], 95.Google Scholar
[39] Graff, K., Hilgarth, J., and Neubrand, H., Op. cit., Ref. [1], 575.Google Scholar
[40] Gaworzewski, P., and Riemann, H., Kristall u. Technik 12, 189 (1977).Google Scholar
[41] Gaworzewski, P., Hahle, S., and Riemann, H., Kristall u. Technik 12, 871 (1977).Google Scholar
[42] Murgai, A., Chi, J. Y., and Gatos, H. C., J. Electrochem. Soc. 127, 1182 (1980).Google Scholar
[43] Ohsawa, A., Honda, K., Ohkawa, S., and Ueda, R., Appl. Phys. Lett. 36, 147 (1980).CrossRefGoogle Scholar
[44] Ohsawa, A., Honda, K., Ohkawa, S., and Shinohara, K., Appl. Phys. Lett. 37, 157 (1980).Google Scholar
[45] Ohsawa, A., Honda, H., Shibatomi, S., and Ohkawa, S., Appl. Phys. Lett. 38, 787 (1981).Google Scholar
[46] Rava, P., Gatos, H. C., and Lagowski, J., Appl. Phys. Lett. 38, 274 (1981).CrossRefGoogle Scholar
[47] Rava, P., Gatos, H. C., and Lagowski, J., Op. cit., Ref. [2], 232.Google Scholar
[48] Fuller, C. S., Ditzenberger, N. B., Hannay, N. B., Buehler, E., Phys. Rev. 96, 833 (1954).Google Scholar
[49] Kaiser, W., Phys. Rev. 105, 1751 (1957).Google Scholar
[50] Logan, R. A., J. Appl. Phys. 28, 819 (1957).Google Scholar
[51] Fuller, C. S., Logan, R. A., J. Appl. Phys. 28, 1427 (1957).CrossRefGoogle Scholar
[52] Hrostowski, H. J., Kaiser, R. H., Phys. Rev. Lett. 1, 199 (1958).Google Scholar
[53] Fuller, C. S., Doleiden, F. H., J. Appl. Phys. 29, 1264 (1958).Google Scholar
[54] Fuller, C. S., Doleiden, F. H., Wolfstirn, K., J. Phys. Chem. Solids 13, 187 (1960).Google Scholar
[55] Matukura, Y., J. Phys. Soc. Japan 14, 918 (1959).Google Scholar
[56] Arai, T., J. Phys. Soc. Japan 17, 246 (1962).Google Scholar
[57] Mordkovich, V. N., Sov. Phys.-Solid State 4, 2662 (1963), 6, 1716 (1965).Google Scholar
[58] Mordkovich, V. N., Sov. Phys.-Solid State 6, 654 (1964).Google Scholar
[59] Starchik, M. I., Fiz. Tekh. Poluprovodnikov 3, 153 (1969).Google Scholar
[60] Kurilo, P. M., Seitov, E., and Khitren', M. I., Soviet Phys. - Semicond. 4, 1953 (1971).Google Scholar
[61] Koval, Y. P., Mordkovich, V. N., Temper, E. M., Soviet Physics - Semicond. 5, 1076 (1971).Google Scholar
[62] Bean, A. R., Newman, R. C., J. Phys. Chem. Solids 33, 255 (1972).Google Scholar
[63] Voltmer, F. W., Digges, T. G. Jr., J. Crystal Growth 19, 215 (1973).Google Scholar
[64] Graff, K., Pieper, H., J. Electronic Mat. 4, 281 (1975).Google Scholar
[65] Capper, P., Jones, A. W., Wallhouse, E. J., and Wilkes, J. G., J. Appl. Phys. 48, 1646 (1977).Google Scholar
[66] Helmreich, D., Sirtl, E., Op. cit., Ref. [1], 626.Google Scholar
[67] Kolker, H., Electrochem. Soc. Spring Meet. 1977, Abstract No. 117.Google Scholar
[68] Kanamori, A., Appl. Phys. Lett. 34, 287 (1979).Google Scholar
[69] Muller, S. H., Sprenger, M., Sieverts, E. G., and Ammerlaan, C. A. J., Solid State Commun. 25, 987 (1978).Google Scholar
[70] Gaworzewski, P., Schmalz, K., phys. stat. sol. (a) 55, 699 (1979).Google Scholar
[71] Wruck, D., Gaworzewski, P., phys. stat. sol. (a) 56, 557 (1979).CrossRefGoogle Scholar
[72] Gaworzewski, P., Schmalz, K., phys. stat. sol. (a) 58, K223 (1980).Google Scholar
[73] Kimerling, L. C., Op. cit., Ref. [6], 21.Google Scholar
[74] Kimerling, L. C., Benton, J. L., Appl. Phys. Lett. 39, 410 (1981).Google Scholar
[75] Cazcarra, V., Zunino, P., J. Appl. Phys. 51, 4206 (1980).Google Scholar
[76] Tajima, M., Kanamori, A., Kishino, S., Iizuka, T., Jap. J. Appl. Phys. 19, L755 (1980).Google Scholar
[77] Tajima, M., Kishino, S., Kanamori, M., lizuka, T., J. Appl. Phys. 51, 2247 (1980).Google Scholar
[78] Tajima, M., Kanamori, A., Tizuka, T., Jap. J. Appl. Phys. 18, 1401 (1979).Google Scholar
[79] Tajima, M., Masui, T., Abe, T., lizuka, T., Op. cit., Ref. [2], 72.Google Scholar
[80] Nakayama, H., Katsura, J., Nishino, T., Hamakawa, Y., Jap. J. Appl. Phys. 19, L547 (1980).Google Scholar
[81] Nakayama, H., Nishino, T., Hamakawa, Y., Appl. Phys. Lett. 38, 623 (1981).CrossRefGoogle Scholar
[82] Reichel, J., phys. stat. sol. (a) 66, 277 (1981).Google Scholar
[83] Glinchuk, K. D., Litovchenko, N. M., phys. stat. sol. (a) 58, 549 (1980).Google Scholar
[84] Glinchuk, K. D., Litovchenko, N. M., Salnik, Z. A., phys. stat. sol. (a) 71, 83 (1982).Google Scholar
[85] Cleland, J. W., J. Electrochem. Soc. 129, 2127 (1982).Google Scholar
[86] Mashovets, T. V., Sov. Phys. Semicond. 16, 1 (1982).Google Scholar
[87] Pajot, B., Compain, H., Lerouille, J., Clerjand, B., “16th Int. Conf. Phys. Semicond.”, Montpellier 1982 (to be published).Google Scholar
[88] Schaake, H.F., Baber, S.C., Pinizzotto, R.F., Op. cit., Ref. [2],273.Google Scholar
[89] DeKock, A. J. R., Op. cit., Ref. [6], 309.Google Scholar
[90] Yasutake, K., Umeno, M., Kawabe, H., Nakayama, H., Nishino, T., Hamakawa, Y., Jap. J. Appl. Phys. 21, 28 (1982).Google Scholar
[91] Ohsawa, A., Takizawa, R., Honda, K., Shibatomi, A., and Okhawa, S., J. Appl. Phys. 53, 5733 (1982).Google Scholar
[92] Grinshtein, P. M., Lazareva, G. V., Orlova, E. V., Sol'nik, Z. A., Fistul', V. I., Soy. Phys. Semicond. 12, 68 (1978).Google Scholar
[93] Muller, S., Ph.D. Thesis, Amsterdam 1981.Google Scholar
[94] Oehrlein, G. S., Ph.D. Thesis, Albany 1981.Google Scholar
[95] Watkins, G. D., Corbett, J. W., Phys. Rev. 121, 1001 (1961).Google Scholar
[96] Corbett, J. W., Watkins, G. D., Chrenko, R. M., McDonald, R. S., Phys. Rev. 121, 1015 (1961).Google Scholar
[97] Tempelhoff, K., Spiegelberg, F., Gleichmann, R., Wruck, D., phys. stat. sol. (a) 56, 213 (1979).Google Scholar
[98] Wada, K., Inoue, N., Kohra, K., J. Crystal Growth 49, 749 (1980).Google Scholar
[99] Oehrlein, G.S., Lindstrom, J.L., Corbett, J.W., Appl. Phys. Lett. 40, 241 (1982).Google Scholar
[100] Pajot, B., J. Phys. Chem. Solids 28,73 (1967).Google Scholar
[101] Singh, V. A., Zunger, A., Lindefelt, U., Phys. Rev. B (accepted for publication).Google Scholar
[102] Lee, Y. H., Corbett, J. W., Phys. Rev. B 13, 2653 (1976).CrossRefGoogle Scholar