Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T18:07:58.843Z Has data issue: false hasContentIssue false

Ion Irradiation of GeSi/Si Strained-Layer Heterostructures

Published online by Cambridge University Press:  15 February 2011

J.M. Glaskol
Affiliation:
Electronic Materials Engineering Department, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia Now at the Materials Science and Engineering Department, North Carolina State University, Raleigh, NC 27695, USA
R. G. Elliman
Affiliation:
Electronic Materials Engineering Department, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia
J. Zou
Affiliation:
Australian Key Centre for Microscopy and Microanalysis and Electron Microscope Unit, University of Sydney, Sydney, NSW 2006, Australia
D.J.H. Cockayne
Affiliation:
Australian Key Centre for Microscopy and Microanalysis and Electron Microscope Unit, University of Sydney, Sydney, NSW 2006, Australia
J. D. Fitz Gerald
Affiliation:
Petrophysics Group, Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia
Get access

Abstract

The strain in GeSi/Si strained layer heterostructures is studied as a function of ion-irradiation and thermal annealing conditions and correlated with the defect microstructure in the GeSi alloy layer. For room temperature irradiation, compressive strain within the alloy layer increases with increasing ion fluence for both low (projected range of ions within the alloy layer) and high energy (projected range of the ions greater than alloy thickness) irradiation. In contrast, elevated temperature irradiation results in an increase in strain for low-energy irradiation, but a decrease for high-energy irradiation. For example, strain relaxation is observed in layers irradiated with I MeV 28Si+ at 253 °C. During subsequent annealing to 750 °C, the strain is partially recovered but relaxes again at temperatures > 750°C. This behavior is shown to be consistent with the evolution of intrinsic (vacancy-type) defects within the alloy layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] James, S., (see also http://www.chips.ibm.com/sige/) Microelectronics Design 2, 4 (1998).Google Scholar
[2] Metzger, R. A., Compound Semiconductor Nov/Dec, 21 (1995).Google Scholar
[3] Lie, D. Y. C., Vantomme, A., Eisen, F., Nicolet, M. A., Arbet-Engels, V., and Wang, K. L., Mat. Res. Soc. Symp. Proc. 262, 1079 (1992).Google Scholar
[4] Lie, D. Y. C., Vantomme, A., Eisen, F., Vreeland, T., Nicolet, M. A., Cams, T. K., Arbet-Engels, V., and Wang, K. L., J. Appl. Phys. 74, 6039 (1993).Google Scholar
[5] Lie, D. Y. C., Song, J. H., Vantomme, A., Eisen, F., Nicolet, M. A., Theodore, N. D., Cams, T. K., and Wang, K. L., J. Appl. Phys. 77, 2329 (1995).Google Scholar
[6] Lie, D. Y. C., J. Electron. Mater. 71, 377 (1998).Google Scholar
[7] Lie, D. Y. C., Cams, T. K., Theodore, N. D., Eisen, F., Nicolet, M. A., and Wang, K. L., Mat. Res. Soc. Symp. Proc. 321, 485 (1994).Google Scholar
[8] Lie, D. Y. C., Theodore, N. D., and Song, J. H., Appl. Surf. Sci. 92, 557 (1996).Google Scholar
[9] Lie, D. Y. C., Im, S., Nicolet, M. A., and Theodore, N. D., J. Appl. Phys. 79, 8341 (1996).Google Scholar
[10] Lie, D. Y. C., Song, J. H., Theodore, N. D., Eisen, F., Nicolet, M. A., Cams, T. K., Wang, K. L., Tzu-Hsin, H., and Kwong, D. L., Mat. Res. Soc. Symp. Proc. 342, 51 (1994).Google Scholar
[11] Lie, D. Y. C., Song, J. H., Nicolet, M. A., and Theodore, N. D., Appl. Phys. Lett. 66, 592 (1995).Google Scholar
[12] Houghton, D. C., Perovic, D. D., Baribeau, J. M., and Weatherly, G. C., J. Appl. Phys. 67, 1850 (1990).Google Scholar
[13] Svensson, B. G., Jagadish, C., and Williams, J. S., Nucl. Instrum. Methods Phys. Res. B 80–81, 583 (1993).Google Scholar
[14] Svensson, B. G., Jagadish, C., Halldn, A., and Lalita, J., Phys. Rev. B 55, 10498 (1997).Google Scholar
[15] Hirth, J. P. and Lothe, J., Theory of Dislocations, 2 ed. (John Wiley and Sons, Inc, New York, 1982).Google Scholar
[16] Lee, Y. H., Gerasimenko, N. N., and Corbett, J. W., Phys. Rev. B 14, 4506 (1976).Google Scholar
[17] RADS© 3.50, (BEDE Scientific Instruments, Bowbum, Durham, UK, 1998) - A simulation package based on the generalised diffraction theory developed independently by Takagi, S. and Taupin, D.. See Takagi, S., Acta Crystallogr. 15, 1311 (1962), D. Taupin, Bull. Soc. Fr. Mineral. Crystallogr. 87, 469 (1964), and S. Takagi, J. Phys. Soc. Japan 26, 1239 (1969).Google Scholar
[18] FASTRIM 6.0, (Hay, H. J., Canberra, Australia, 1997) - An in-house Monte Carlo simulation code using the stopping tables of and based on TRIM95 (TRansport of Ions in Matter, 1995 version) by J. P. Biersack, J. F. Ziegler, and G. Cuomo. (See also J. P. Biersack and L. G. Haggmark, Nucl. Instrum. Methods Phys. Res. B 174, 257 (1980)).Google Scholar
[19] Bai, G. and Nicolet, M. A., J. Appl. Phys. 70, 3551 (1991).Google Scholar
[20] Biersack, J.P. and Haggmark, L. G., Nucl. Instrum. Methods Phys. Res. B 174, 257 (1980).Google Scholar
[21] Vos, M., Wu, C., Mitchell, I. V., Baribeau, J.-M., and McAffery, J. P., Appl. Phys. Lett. 58, 951 (1991).Google Scholar
[22] Haynes, T.E. and Holland, O. W., Appl. Phys. Lett. 61, 61 (1992).Google Scholar
[23] Bai, G. and Nicolet, M.-A., J. Appl. Phys. 71, 4227 (1992).Google Scholar
[24] Lie, D.Y.C., Vantomme, A., Eisen, F., Vreeland, T., Nicolet, M. A., Cams, T. K., Wang, K. L., and Hollander, B., J. Electron. Mater. 23, 369 (1994).Google Scholar
[25] Glasko, J.M. and Goringe, C. M., Unpublished work in preparation. (1998).Google Scholar
[26] Kringhøj, P., Glasko, J. M., and Elliman, R. G., Nucl. Instrum. Methods Phys. Res. B 96, 276 (1995).Google Scholar
[27] Glasko, J.M., Ph.D. Thesis, Australian National University, Canberra, Australia, 1998.Google Scholar
[28] Takeda, S., Jpn. J. Appl. Phys. Part 2 30, L639 (1991).Google Scholar
[29] Takeda, S., Kohyama, M., and Ibe, K., Philos. Mag. A 70, 287 (1994).Google Scholar
[30] Glasko, J.M., Zou, J., Cockayne, D. J. H., Gerald, J. D. Fitz, and Elliman, R. G., Mat. Res. Soc. Symp. Proc. 442, 367 (1997).Google Scholar
[31] Glasko, J.M., Elliman, R. G., Zou, J., Cockayne, D. J. H., and Gerald, J. D. Fitz, Appl. Phys. Lett. 73, 838 (1998).Google Scholar