Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-13T07:25:46.024Z Has data issue: false hasContentIssue false

ORMOCER®s (Organic-Inorganic Hybrid Polymers) for Telecom Applications: Structure/Property Correlations

Published online by Cambridge University Press:  01 February 2011

Frank Kahlenberg
Affiliation:
Fraunhofer-Institut Silicatforschung, Neunerplatz 2, D-97082 Würzburg, Germany.
Michael Popall
Affiliation:
Fraunhofer-Institut Silicatforschung, Neunerplatz 2, D-97082 Würzburg, Germany.
Get access

Abstract

The development and characterization of fluoroaryl functionalized organic-inorganic hybrid polymers for optical waveguide applications is presented. The materials are prepared from organoalkoxysilanes in a two-step process. The first step is the formation of the inorganic polysiloxane network by hydrolysis and polycondensation in order to obtain a soluble resin. This can be mixed with a photo initiator and applied onto a substrate as a photo-sensitive film. Micro patterns (waveguides with core and cladding) are then manufactured in a second step by exposure to UV-light through a mask. The polymers are characterized with respect to application in the fabrication of telecom optical waveguide devices. Thus, special attention is turned to optical losses in the telecom wavelengths at 1310 nm and 1550 nm as well as to refractive indices. During all stages of ORMOCER® preparation, structure-property correlations are deduced from presented characterization data.Various spectroscopic tools give an insight into network structures of polycondensate resins and cured hybrid polymer samples. 29Si-NMR in particular is used for the quantitative analysis of siloxane species. With the aid of molecular modeling, structural characteristics of oligomeric intermediates as determined by experiment are visualized. ORMOCER® resins with low optical losses of 0.28 dB/cm at 1310 nm and 0.42 dB/cm at 1550 nm, respectively, are prepared. Subsequent micropatterning by means of photolithography results in waveguide and other test patterns. A low optical loss of 0.51 dB/cm at 1550 nm is measured on a waveguide manufactured from a photopatternable fluoroaryl functionalized ORMOCER®.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cruz Rivera, J.L., Gaylord, T.K., and Glytsis, E.N. in Fundamentals of Microsystems Packaging, edited by Tummala, R.R. (McGraw-Hill, New York 2001), pp. 466499.Google Scholar
2. Dutton, H.J.R., Understanding Optical Communications (Prentice-Hall, Upper Saddle River NJ, 1998).Google Scholar
3. Ma, H., Jen, A.K.-Y., and Dalton, L.R., Adv. Mater. 14, 1339 (2002).Google Scholar
4. Zhou, M., Opt. Eng. 41, 1631 (2002).Google Scholar
5.(a) Eldada, L. in Organic Photonic Materials and Devices IV, edited by Kippelen, B., Bradley, D.D., (Proc. SPIE 4642, 2002), pp. 1122.Google Scholar
(b) Eldada, L., Opt. Eng. 40, 1165 (2001).Google Scholar
6. Daum, W., Krauser, J., Zamzow, P.E., and Ziemann, O., POF – Optische Polymerfasern für die Datenkommunikation (Springer-Verlag, Berlin, 2001).Google Scholar
7. Young, M., Optik, Laser, Wellenleiter (Springer-Verlag, Berlin, 1997).Google Scholar
8. ORMOCER® is a registered trademark of the Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Munich.Google Scholar
9. Houbertz, R., Fröhlich, L., Popall, M., Streppel, U., Dannberg, P., Bräuer, A., Serbin, J., and Chichkov, B.N., Adv. Eng. Mater. 5, 551 (2003).Google Scholar
10. Houbertz, R., Domann, G., Cronauer, C., Schmitt, A., Martin, H., Park, J.-U., Fröhlich, L., Buestrich, R., Popall, M., Streppel, U., Dannberg, P., Wächter, C., and Bräuer, A., Thin Solid Films 442, 194 (2003).Google Scholar
11. Popall, M., Buestrich, R., Kahlenberg, F., Andersson, A., Haglund, J., Robertsson, M.E., Blau, G., Gale, M., Rösch, O., Dabek, A., Neumann-Rodekirch, J., Cergel, L., and Lambert, D., in Hybrid Organic/Inorganic Materials – 2000, edited by Laine, R.M., Sanchez, C., Giannelis, E., and Brinker, C.J. (Mater. Res. Soc. Symp. Proc. 628, Pittsburg, PA, 2001) pp. CC9.4.1–CC9.4.12.Google Scholar
12. (a) Buestrich, R., Kahlenberg, F., Popall, M., Dannberg, P., Müller-Fiedler, R., and Rösch, O., J. Sol-Gel Sci. Technol. 20, 181 (2001).Google Scholar
(b) Buestrich, R., Kahlenberg, F., Popall, M., Martin, A., and Rösch, O. in Hybrid Organic/Inorganic Materials – 2000, edited by Laine, R.M., Sanchez, C., Giannelis, E., and Brinker, C.J. (Mater. Res. Soc. Symp. Proc. 628, Pittsburg, PA, 2001), pp. CC9.8.1–CC9.8.6.Google Scholar
13. (a) Popall, M., Kappel, J., Schulz, J., and Wolter, H. in Micro System Technologies '94 / 4th International Conference on Micro Electro, Opto, Mechanical Systems and Components, Berlin, October 19–21, 1994, edited by Reichl, H. and Heuberger, A. (vde-Verlag GmbH, Berlin, 1994), pp. 271280.Google Scholar
(b) Dannberg, P., Bräuer, A., Karthe, W., Waldhäusl, R., and Wolter, H., in Micro System Technologies '94 / 4th International Conference on Micro Electro, Opto, Mechanical Systems and Components, Berlin, October 19–21, 1994, edited by Reichl, H. and Heuberger, A. (vde-Verlag GmbH, Berlin, 1994), 281287.Google Scholar
(c) Popall, M., Kappel, J., Pilz, M., and Schulz, J., J. Sol-Gel Sci. Technol. 2, 157 (1994).Google Scholar
14. Groh, W., Makromol. Chem. 189, 2861 (1988).Google Scholar
15. Rousseau, A., Boutevin, B., and Bosc, D. in Proceedings of the First Plastic Optical Fibres and Application Conference, Paris, 1992 (IGI Europe, Boston MA, 1992), pp. 3337.Google Scholar
16. Hornak, L.A. (ed.), Polymers for Lightwave and Integrated Optics – Technology and Applications (Marcel Dekker, New York, 1992).Google Scholar
17. Roscher, C., and Popall, M. in Better Ceramics Through Chemistry VII: Organic/Inorganic Hybrid Materials, edited by Coltrain, B.K., Sanchez, C., Schaefer, D.W., and Wilkes, G.L. (Mater. Res. Soc. Symp. Proc. 435, Pittsburg, PA, 1996) pp. 547552.Google Scholar
18. (a) Hougham, G., Tesoro, G., Viehbeck, A., Chapple-Sokol, J.D., Macromolecules, 27, 5964 (1994).Google Scholar
(b) Hougham, G., Tesoro, G., Viehbeck, A., Macromolecules 29, 3453 (1996).Google Scholar
19. (a) Oubaha, M., Smaïhi, M., Etienne, P., Coudray, P., Moreau, Y., J. Non-Cryst. Solids 318, 305 (2003).Google Scholar
(b) Skumanich, A., Moylan, C.R., Chem. Phys. Lett. 174, 139 (1990).Google Scholar
20. Kahlenberg, F., Buestrich, R., and Popall, M. in Hybrid Organic/Inorganic Materials – 2000, edited by Laine, R.M., Sanchez, C., Giannelis, E., and Brinker, C.J. (Mater. Res. Soc. Symp. Proc. 628, Pittsburg, PA, 2001), pp. CC11.6.1–CC11.6.6.Google Scholar
21. (a) Materials StudioTM Version 2.2, (Accelrys Inc., 2002).Google Scholar
(b) Sun, H., Rigby, D., Spectrochim. Acta Part A 53, 1301 (1997).Google Scholar
(c) Sun, H., J. Phys. Chem. B 102, 7338 (1998).Google Scholar