Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-12T14:11:46.809Z Has data issue: false hasContentIssue false

Microwave Melting of Ion-Conducting Glasses

Published online by Cambridge University Press:  10 February 2011

D. J. Duval
Affiliation:
CEMS Department, University of California, Davis, CA 95616, djduval@ucdavis.edu
M. J. E. Terjak
Affiliation:
CEMS Department, University of California, Davis, CA 95616, djduval@ucdavis.edu
S. H. Risbud
Affiliation:
CEMS Department, University of California, Davis, CA 95616, djduval@ucdavis.edu
B. L. Phillips
Affiliation:
CEMS Department, University of California, Davis, CA 95616, djduval@ucdavis.edu
Get access

Abstract

Glasses of the system AgI-Ag2O-(0.95B2O3:0.05SiO2) have been formed by microwave processing using a domestic multi-mode oven operating at 900 watts and 2.45 GHz. Microwave heating resulted in rapid melting times with homogeneity in the quenched glasses equivalent to or better than conventional melting at 730°C. The glass forming region in this pseudo-ternary system is compared with the conventionally melted glass forming region in the system AgI-Ag2O-B2O3. A reversible color difference has been observed between glasses conventionally melted and those melted by microwave for all glass compositions in our system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arof, A. K., Seman, K. C., Hashim, A. N., Yahya, R., Radhakrishna, S., Mat. Sci. Eng. B 31 249–54 (1995)Google Scholar
2. Sadaoka, Y., Matsuguchi, M., Sakai, Y., J. Mat. Sci. Lett. 9 1028–32 (1990)Google Scholar
3. Minami, T., J. Non-Cryst. Sol. 73 273–84 (1985)Google Scholar
4. Vaidhyanathan, B., Ganguli, M., Rao, K. J., J. Sol. State Chem. 113 448–50 (1994)Google Scholar
5. Minami, T., Shimizu, T., Tanaka, M., Sol. State Ion. 9&10 577–84 (1983)Google Scholar
6. Shaju, K. M., Chandra, S., Phys. Stat. Sol. B 181 301–11 (1994)Google Scholar
7. Sarma, R. V. G. K., Radhakrishna, S., J. Mat. Sci. Let. 9 (10) 1237–8 (1990)Google Scholar
8. Branda, F., Costantini, A., Buri, A., Phys. Chem. Glass 33 (2) 40–2 (1992)Google Scholar
9. Shastry, M. C. R., Rao, K. J., Sol. State Ion. 37 1729 (1989)Google Scholar
10. Kenkre, V. M., Kus, M., Katz, J. D., Phys. Stat. Sol. B 172 337–47 (1992)Google Scholar
11. Kenkre, V. M., Kus, M., Katz, J. D., Phys. Rev. B 46 (21) 13825–31 (1992)Google Scholar
12. Kamitsos, E. I., Kapoutsis, J. A., Chryssikos, G. D., Hutchinson, J. M., Pappin, A. J., Ingram, M. D., Duffy, J. A., Phys. Chem. Glass 36 (3) 141–9 (1995).Google Scholar