Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T11:09:51.565Z Has data issue: false hasContentIssue false

Continuum imit of a tep Flow odel of Epitaxial Growth

Published online by Cambridge University Press:  17 March 2011

R.V. Kohn
Affiliation:
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, U.S.A.
T.S. Lo
Affiliation:
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, U.S.A.
N.K. Yip
Affiliation:
Department of Mathematics, Purdue University, West Lafay ette, IN 47907, U.S.A.
Get access

Abstract

We examine a class of step ow models of epitaxial growth obtained from a Burton-Cabrera-Frank (BCF) type approach in one space dimension. ur goal is to derive a consistent contin uummodel for the ev olutionof the lm surface. Away from peaks and valleys, the surface height solves a Hamilton- acobi equation (H E). he peaks are free boundaries for this H E. heir evolution must be speci ed by boundary conditions re ecting the microscopic physics of nucleation. e investigate this boundary condition by numerical simulation of the step ow dynamics using a simple n ucleationlaw. ur results rev ealthe presence of sp ecial structures in the pro le near a peak; we discuss the relationship between these structures and the contin uumequation. e further address the importance of ev aporationfor matching the local behavior near the peak to the solution of the contin uum equation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. impinelli, A. and Villain, J., Physics of Crystal Growth. (Cambridge niversit y Press, 1998)Google Scholar
2. Villain, J., J. de hysique 1, 19 (1991); O. Pierre-Louis, C. Misbah, Y. Saito, J. Krug and P. Politi, Phys. ev. ett. 80, 4221 (1998).Google Scholar
3. oliti, P.P. and Villain, J., Phys. Rev. B 54, 5114 (1996).Google Scholar
4. vedensky, D.D., Zangwill, A., Luse, C.N. andWilby, M.R., Phys. Rev. E 48, 852 (1993).Google Scholar
5. Burton, W.K., Cabrera, N. and Frank, F., Phil. Trans. Roy. Soc. 243, 299 (1951).Google Scholar
6. , W. E and Yip, N.K., J. Stat. Phys. 104, 221 (2001).Google Scholar
7. Evans, L.C., Partial Di erential Equation, Graduate tudies in Mathematics, Vol. 19 (American athematical Society, 1998)Google Scholar
8. Schulzeand, T.. Kohn, R.V., Physica D 132, 520 (1999).Google Scholar
9. Elkinani, I. and Villain, J., J. de Physique 4, 949 (1994).Google Scholar
10. Krug, J., Politi, P. and Michely, T., Phys. Rev. B 61, 14037 (2000); J. Krug, Eur. Phys. J.B B 18, 713 (2000).Google Scholar
11. Krug, J., J. Stat. Phys. 87, 505 (1997).Google Scholar
12. Šmilauer, P., Rost, M. and Krug, J., Phys. Rev. E 59, 6263 (1999).Google Scholar