Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T22:50:23.858Z Has data issue: false hasContentIssue false

Exciton-mediated excitation of Er3+ in Erbium-doped silicon rich silicon oxide

Published online by Cambridge University Press:  17 March 2011

Se-Young Seo
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Kusung-dong, Yusung-gu, Taejon, Korea
Jung H. Shin
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Kusung-dong, Yusung-gu, Taejon, Korea
Get access

Abstract

Exciton-mediated excitation of Er3+ in erbium doped silicon rich silicon oxide (SRSO) is investigated. Er-doped SRSO films were fabricated by electron cyclotron-resonance plasmaenhanced chemical vapor deposition of Er-doped SiOx (x < 2) using SiH4 and O2 as source gases and co-sputtering of Er, followed by an anneal at 950 °C. Very weak visible luminescence from Si nanocluster relative to Er3+ luminescence were observed, indicating a very efficient excitation of Er3+ ions by Si nanoclusters. From detailed modeling and analysis of time-resolved Er3+ luminescence as the excitation duration and excitation power, we conclude that exciton-erbium coupling is dominant over exciton-nanocluster. The results are consistent with the proposal that the luminescent Er3+ ions are located predominantly in the SiO2 layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kenyon, A. J., Trwoga, P. F., Federighi, M. and Pitt, C. W., J. Phys.: Condens. Matter 6 L319 (1994).Google Scholar
2. Shin, J. H., Kim, M., Seo, S. and Lee, C., Appl. Phys. Lett 72, 1092 (1998).Google Scholar
3. Fujii, M., Yoshida, M., Kanazawa, Y., Hayashi, S. and Yamamoto, K., Appl. Phys. Lett 71, 1198 (1997).Google Scholar
4. Kik, P. G., Brongersma, M. L. and Polman, A., Appl. Phys. Lett. 76, 2325 (2000).Google Scholar
5. Palm, J., Gan, F., Zheng, B., Michel, J. and Kimerling, L. C., Phys. Rev. B. 54, 17603 (1996).Google Scholar
6. Priolo, F., Franzó, G., Coffa, S. and Carnera, A., Phys. Rev. B. 57, 4443 (1998).Google Scholar
7. Kik, P. G. and Polman, A., J. Appl. Phys. 88 1992 (2000)Google Scholar
8. Seo, S. and Shin, J. H., Appl. Phys. Lett. 75, 4070 (1999).Google Scholar
9. Han, H., Seo, S., Shin, J. H. and Kim, D., J. Appl. Phys. 88 2160 (2000).Google Scholar
10. Delerue, C., Allan, G. and Lannoo, M., Light Emission from Silicon: From Physics to Devices, Semicond. Semimet. 49, 253 (Academic, New York, 1998).Google Scholar
11. Shin, J. H., Seo, S., Kim, S., Bishop, S. G., Appl. Phys. Lett. 76, 1999 (2000).Google Scholar
12. Yassievich, I. N. and Kimerling, L. C., Semicond. Sci. Technol. 8, 718 (1993).Google Scholar
13. Shin, J. H., Jhe, J., Seo, S., Ha, Y. H. and Moon, D. W., Appl. Phys. Lett. 76 3567 (2000).Google Scholar
14. Kvalev, D., Dener, J., Heckler, H., Polisski, G., Künzner, K., and Koch, F., Phys. Rev. B 61 4485 (2000).Google Scholar