Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T11:11:53.669Z Has data issue: false hasContentIssue false

Evaluation of Bt-toxin uptake by the non-target herbivore, Myzus persicae (Hemiptera: Aphididae), feeding on transgenic oilseed rape

Published online by Cambridge University Press:  05 April 2007

G. Burgio*
Affiliation:
Dipartimento di Scienze e Tecnologie Agroambientali, Alma Mater Studiorum-Università di Bologna, Viale Fanin 42, 40127Bologna, Italy
A. Lanzoni
Affiliation:
Dipartimento di Scienze e Tecnologie Agroambientali, Alma Mater Studiorum-Università di Bologna, Viale Fanin 42, 40127Bologna, Italy
G. Accinelli
Affiliation:
Dipartimento di Scienze e Tecnologie Agroambientali, Alma Mater Studiorum-Università di Bologna, Viale Fanin 42, 40127Bologna, Italy
G. Dinelli
Affiliation:
Dipartimento di Scienze e Tecnologie Agroambientali, Alma Mater Studiorum-Università di Bologna, Viale Fanin 42, 40127Bologna, Italy
A. Bonetti
Affiliation:
Dipartimento di Scienze e Tecnologie Agroambientali, Alma Mater Studiorum-Università di Bologna, Viale Fanin 42, 40127Bologna, Italy
I. Marotti
Affiliation:
Dipartimento di Scienze e Tecnologie Agroambientali, Alma Mater Studiorum-Università di Bologna, Viale Fanin 42, 40127Bologna, Italy
F. Ramilli
Affiliation:
Dipartimento di Scienze e Tecnologie Agroambientali, Alma Mater Studiorum-Università di Bologna, Viale Fanin 42, 40127Bologna, Italy
*
*Fax: 0039 051 2096281 E-mail: gburgio@entom.agrsci.unibo.it

Abstract

As consequence of the concern about the biosafety of genetically modified plants, biological and ecological studies are considered crucial for environmental risk assessment. Laboratory experiments were carried out in order to evaluate the transfer of the Cry1Ac Bt-toxin from a transgenic Bt-oilseed rape to a non-target pest, Myzus persicae Sulzer. Cry1Ac protein levels in plants and aphids were determined using a double sandwich enzyme-linked immunosorbent assay. Phloem sap from (Bt+) and (Bt−) oilseed rape plants was collected from leaves using a standard method of extraction in an EDTA buffer. Bt-toxin was present in phloem sap, with a mean concentration of 2.7±1.46 ppb, corresponding to a 24-fold lower level than in oilseed rape leaves. Toxin was also detected in aphid samples, with a mean concentration in the positive samples of 2.0±0.8 ppb. The evidence that Bt-toxin remains in herbivores, in this case an aphid, could be useful to clarify functional aspects linked to possible consequences of Bt-crops on food chains involving herbivore–natural enemy trophic systems. Further studies are needed in order to improve the knowledge on the functional aspects linked to the transfer of the Cry1Ac Bt-toxin from GM-oilseed rape to aphids and their possible consequence.

Type
Brief Report
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berthouex, P.M. & Brown, L.C. (2002) Statistics for environmental engineers. 2nd edn. Boca Raton, Florida, Lewis Publishers.CrossRefGoogle Scholar
Conner, A.J., Glare, T.R. & Nap, J.-P. (2003) The release of genetically modified crops into the environment. Part II: overview of ecological risk assessment. Plant Journal 33, 1946.CrossRefGoogle ScholarPubMed
Down, R.E., Gatehouse, A.M.R., Hamilton, W.D.O. & Rossignol, P.A. (1996) Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid (Aulacorthum solani) when administered in vitro and via transgenic plants both in laboratory and glasshouse trials. Journal of Insect Physiology 42, 10351045.CrossRefGoogle Scholar
Dutton, A., Klein, H., Romeis, J. & Bigler, F. (2002) Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for predator Chrysoperla carnea. Ecological Entomology 27, 441447.CrossRefGoogle Scholar
Dutton, A., Romeis, J. & Bigler, F. (2003) Assessing the risks of insect resistant transgenic plants on entomophagous arthropods: Bt-maize expressing Cry1Ab as a case study. BioControl 48, 611636.CrossRefGoogle Scholar
Dutton, A., Obrist, L., D'Alessandro, M., Diener, L., Müller, M., Romeis, J. & Bigler, F. (2004) Tracking Bt-toxin in transgenic maize to assess the risks on non-target arthropods. IOBC wprs Bulletin 27(3), 5763.Google Scholar
Gatehouse, A.M.R., Down, R.E., Powell, K.S., Sauvion, N., Rahbé, Y., Newell, C.A., Merryweather, A., Hamilton, W.D.O. & Gatehouse, J.A. (1996) Transgenic potato plants with enhanced resistance to the peach–potato aphid Myzus persicae. Entomologia Experimentalis et Applicata 79, 295307.CrossRefGoogle Scholar
Gatehouse, J.A. & Gatehouse, A.M.R. (2000) Genetic engineering of plants for insect resistance. pp. 211241in Rechcigl, J.E. & Rechcigl, N.A. (Eds) Biological and biotechnological control of insect pests. Boca Raton, Florida, Lewis Publishers.Google Scholar
Groot, A.T. & Dicke, M. (2002) Insect-resistant transgenic plants in a multi-trophic context. Plant Journal 31, 387406.CrossRefGoogle Scholar
Harper, B.K., Mabon, S.A., Leffel, S.M., Halfhill, M.D., Richards, H.A., Moyer, K.A. & Stewart, C.N. Jr. (1999) Green fluorescent protein as a marker for expression of a second gene in transgenic plants. Nature Biotechnology 17, 11251129.CrossRefGoogle ScholarPubMed
Hilder, V.A. & Boulter, D. (1999) Genetic engineering of crop plants for insect resistance – a critical review. Crop Protection 18, 177191.CrossRefGoogle Scholar
James, C. (2003) Preview: global status of commercialized transgenic crops: 2003. ISAAA Briefs No. 30. ISAAA Ithaca, New York.Google Scholar
Jervis, M. & Kidd, N. (1996) Insect natural enemies. Practical approaches to their study and evaluation. London, Chapman and Hall.CrossRefGoogle Scholar
Knols, B.G.J. & Dicke, M. (2003) Bt crop risk assessment in the Netherlands. Nature Biotechnology 21, 973974.CrossRefGoogle ScholarPubMed
Lanzoni, A., Accinelli, G., Bazzocchi, G.G. & Burgio, G. (2004) Biological traits and life table of the exotic Harmonia axyridis compared to Hippodamia variegata and Adalia bipunctata (Coleoptera: Coccinellidae). Journal of Applied Entomology 128, 298306.CrossRefGoogle Scholar
Lee, S.I., Lee, S.-H., Koo, J.C., Chun, H.J., Lim, C.O., Mun, J.H., Song, Y.H. & Cho, M.J. (1999) Soybean Kunitz trypsin inhibitor (SKTI) confers resistance to the brown planthopper (Nilaparvata lugens Stål) in transgenic rice. Molecular Breeding 5, 19.CrossRefGoogle Scholar
Lövei, G.L. & Arpaia, S. (2005) The impact of transgenic plants on natural enemies: a critical review of laboratory studies. Entomologia Experimentalis et Applicata 114, 114.CrossRefGoogle Scholar
Lozzia, G.C., Furlanis, C., Manachini, B. & Rigamonti, I.E. (1998) Effects of Bt-corn on Rhopalosiphum padi L. (Rhynchota Aphididae) and on its predator Chrysoperla carnea Stephen (Neuroptera Chrysopidae). Bollettino di Zoologia Agraria e di Bachicoltura Ser. II 30, 153164.Google Scholar
Mandaokar, A.D., Goyal, R.K., Shukla, A., Bisaria, S., Bhalla, R., Reddy, V.S., Chaurasia, A., Sharma, R.P., Altosaar, I. & Ananda Kumar, P. (2000) Transgenic tomato plants resistant to fruit borer (Helicoverpa armigera Hübner). Crop Protection 19, 307312.CrossRefGoogle Scholar
Raps, A., Kehr, J., Gugerli, P., Moar, W.J., Bigler, F. & Hilbeck, A. (2001) Immunological analysis of phloem sap of Bacillus thuringiensis corn and of the nontarget herbivore Rhopalosiphum padi (Homoptera: Aphididae) for the presence of Cry1Ab. Molecular Ecology 10, 525533.CrossRefGoogle ScholarPubMed
Romeis, J. (2004) Workshop report: impact of GM crops on natural enemies. IOBC wprs Bulletin 27(3), 193195.Google Scholar
Scholte, E.-J & Dicke, M. (2005) Effects of insect-resistant transgenic crops on non-target arthropods: first step in pre-market risk assessment studies. COGEM Report on Selecting non-Target Organisms for ERA. pp. 149. Wageningen University.Google Scholar
Shi, Y., Wang, M.B., Powell, K.S., Van Damme, E., Hilder, V.A., Gatehouse, A.M.R., Boulter, D. & Gatehouse, J.A. (1994) Use of rice sucrose synthase-1 promoter to direct phloem-specific expression of beta-glucuronidase and snowdrop lectin genes in transgenic tobacco plants. Journal of Experimental Botany 45, 623631.CrossRefGoogle Scholar
Sorlini, C., Buiatti, M., Burgio, G., Cellini, F., Giovannelli, V., Lener, M., Massari, G., Perrino, P., Selva, E., Spagnoletti, A. & Staiano, G. (2005) La valutazione del rischio ambientale dell'emissione deliberato nell'ambiente di organismi geneticamente modificati. Proposta metodologica. Ministero dell'Ambiente e della Tutela del Territorio, Italy.Google Scholar
Sudhakar, D., Fu, X., Stoger, E., William, S., Spence, J., Bown, D.P., Bharathi, M., Gatehouse, J.A. & Christou, P. (1998) Expression and immunolocalization of the snowdrop lectin, GNA in transgenic rice plants. Transgenic Research 7, 371378.CrossRefGoogle Scholar