Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T00:22:18.842Z Has data issue: false hasContentIssue false

Analysis of Pseudohomophone Orthographic Errors through Functional Magnetic Resonance Imaging (fMRI)

Published online by Cambridge University Press:  04 December 2017

Joan Guardia-Olmos*
Affiliation:
Universitat de Barcelona (Spain)
Daniel Zarabozo-Hurtado
Affiliation:
Universidad de Guadalajara (Mexico)
Maribe Peró-Cebollero
Affiliation:
Universitat de Barcelona (Spain)
Esteban Gudayol-Farré
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo (Mexico)
Fabiola R. Gómez-Velázquez
Affiliation:
Universidad de Guadalajara (Mexico)
Andrés González-Garrido
Affiliation:
Universidad de Guadalajara (Mexico)
*
*Correspondence concerning this article should be addressed to Joan Guardia-Olmos. Universitat de Barcelona. Psicología. Barcelona (Spain). E-mail: jguardia@ub.edu

Abstract

The study of orthographic errors in a transparent language such as Spanish is an important topic in relation to writing acquisition because in Spanish it is common to write pseudohomophones as valid words. The main objective of the present study was to explore the possible differences in activation patterns in brain areas while processing pseudohomophone orthographic errors between participants with high (High Spelling Skills (HSS)) and low (Low Spelling Skills (LSS)) spelling orthographic abilities. We hypothesize that (a) the detection of orthographic errors will activate bilateral inferior frontal gyri, and that (b) this effect will be greater in the HSS group. Two groups of 12 Mexican participants, each matched by age, were formed based on their results in a group of spelling-related ad hoc tests: HSS and LSS groups. During the fMRI session, two experimental tasks were applied involving correct and pseudohomophone substitution of Spanish words. First, a spelling recognition task and second a letter searching task. The LSS group showed, as expected, a lower number of correct responses (F(1, 21) = 52.72, p <.001, η2 = .715) and higher reaction times compared to the HSS group for the spelling task (F(1, 21) = 60.03, p <.001, η2 = .741). However, this pattern was reversed when the participants were asked to decide on the presence of a vowel in the words, regardless of spelling. The fMRI data showed an engagement of the right inferior frontal gyrus in HSS group during the spelling task. However, temporal, frontal, and subcortical brain regions of the LSS group were activated during the same task.

Type
Research Article
Copyright
Copyright © Universidad Complutense de Madrid and Colegio Oficial de Psicólogos de Madrid 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

How to cite this article:

Guardia-Olmos, J., Zarabozo-Hurtado, D., Peró-Cebollero, M., Gudayol-Farré, E., Gómez-Vázquez, F. R., & González-Garrido, A. (2017). Analysis of pseudohomophone orthographic errors through functional magnetic resonance imaging (fMRI). The Spanish Journal of Psychology, 20. e74. Doi:10.1017/sjp.2017.72

References

Binder, J. R., Medler, D. A., Westbury, C. F., Liebenthal, E., & Buchanan, L. (2006). Tuning of the human left fusiform gyrus to sublexical orthographic structure. NeuroImage, 33, 739748. https://doi.org/10.1016/j.neuroimage.2006.06.053 Google Scholar
Booth, J. R., Cho, S., Burman, D., & Bitan, T. (2007). Neural correlates of mapping from phonology to orthography in children performing an auditory spelling task. Developmental Science, 10, 441451. https://doi.org/10.1111/j.1467-7687.2007.00598.x Google Scholar
Bolger, D. J., Hornickel, J., Cone, N. E., Burman, D. D., & Booth, J. R. (2008). Neural correlates of orthographic and phonological consistency effects in children. Human brain mapping, 29, 14161429. https://doi.org/10.1002/hbm.20476 Google Scholar
Brunswick, N., McCrory, E., Price, C. J., Frith, C. D., & Frith, U. (1999). Explicit and implicit processing of words and pseudowords by adult developmental dyslexics: A search for Wernicke’s Wortschatz? Brain, 122, 19011917. https://doi.org/10.1093/brain/122.10.1901 Google Scholar
Castles, A., & Nation, K. (2006). How does orthographic learning happen? In Andrews, S. (Ed.), From ink marks to ideas. Current issues in lexical processing (pp. 151179). New York, NY: Psychology Press.Google Scholar
Cohen, L., Lehéricy, S., Chochon, F., Lemer, C., Rivaud, S., & Dehaene, S. (2002). Language–specific tuning of visual cortex? Functional properties of the visual word form area. Brain, 125, 10541069. https://doi.org/10.1093/brain/awf094 Google Scholar
Cone, N. E., Burman, D., Bitan, T., Bolger, D. J., & Booth, J. R. (2008). Developmental changes in brain regions involved in phonological and orthographic processing during spoken language processing. NeuroImage, 41, 623635.CrossRefGoogle ScholarPubMed
Eckert, M., Leonard, C. M., Richards, T. L., Aylward, E. H., Thomson, J., & Berninger, V. W. (2003). Anatomical correlates of dyslexia: Frontal and cerebellar findings. Brain, 126, 482494. https://doi.org/10.1093/brain/awg026 CrossRefGoogle ScholarPubMed
Edwards, J. D., Pexman, P. M., Goodyear, G. D., & Chambers, C. G. (2005). An fMRI investigation of strategies for word recognition. Cognitive Brain Research, 24, 648662. https://doi.org/10.1016/j.cogbrainres.2005.03.016 Google Scholar
Ehri, L. C. (1995). Phases of development in learning to read words by sight. Journal of Research in Reading, 18, 116125. https:/doi.org/10.1111/j.1467-9817.1995.tb00077.x Google Scholar
Farràs, L., Guàrdia, J., & Peró, M. (2015). Efecto del tamaño kernel en el suavizado de señal BOLD en paradigmas funcionales (RMf) [Effect of kernel size for BOLD signal smoothing in functional paradigms (fMRI)]. Escritos de Psicología, 8, 2129.CrossRefGoogle Scholar
Friston, K. (2012). Ten ironic rules for non–statistical reviewers. NeuroImage, 61, 13001310. https://doi.org/10.1016/j.neuroimage.2012.04.018 CrossRefGoogle ScholarPubMed
Frost, R., Katz, L., & Bentin, S. (1987). Strategies for visual word recognition and orthographical depth: a multilingual comparison. Journal of Experimental Psychology: Human Perception and Performance, 13, 104115. https://doi.org/10.1037/0096-1523.13.1.104 Google Scholar
Glezer, L. S., Jiang, X., & Riesenhuber, M. (2009). Evidence for highly selective neuronal tuning to whole words in the “visual word form area”. Neuron, 62, 199204. https://doi.org/10.1016/j.neuron.2009.03.017 Google Scholar
Gómez-Velázquez, F. R., González-Garrido, A. A., Guàrdia-Olmos, J., Peró-Cebollero, M., Zarabozo-Hurtado, D., & Zarabozo, D. (2014). Evaluación del conocimiento ortográfico en adultos jóvenes y su relación con la lectura [Orthographic knowledge evaluation in young adults and its relationship with reading]. Revista Neuropsicología, Neuropsiquiatría y Neurociencias, 14, 4067.Google Scholar
González-Garrido, A. A., Gómez-Velázquez, F. R., & Rodríguez-Santillán, E. (2014). The orthographic recognition in late adolescents. An assessment through event-related brain potentials. Clinical EEG Neuroscience, 45, 113121. https://doi.org/10.1177/1550059413489975 CrossRefGoogle ScholarPubMed
Kriegeskorte, N., Simmons, W. K., Bellgowan, P., & Baker, C. I. (2009). Circular analysis in systems neuroscience – the dangers of doubledipping. NatureNeuroscience, 12, 535540.Google Scholar
Kronbichler, M., Klackl, J., Richlan, F., Schurz, M., Staffen, W., Ladurner, G., & Wimmer, H. (2009). On the functional neuroanatomy of visual word processing: Effects of case and letter deviance. Journal of Cognitive Neuroscience, 21, 222229. https://dx.doi.org/10.1162/jocn.2009.21002 CrossRefGoogle ScholarPubMed
Logothetis, N. K. (2002). The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philosophical Transactions of the Royal Society of London B. 357, 10031037. https://doi.org/10.1098/rstb.2002.1114 CrossRefGoogle ScholarPubMed
Newmann, R. L., & Joanisse, M. F. (2001). Modulation of brain regions involved in word recognition by homophonous stimuli: An fMRI study. Brain Research, 1367, 250264. https://doi.org/10.1016/j.brainres.2010.09.089 Google Scholar
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97113. https://doi.org/10.1016/0028-3932(71)90067-4 Google Scholar
Paulesu, E., Brunswick, N., & Paganelli, F. (2010). Cross-cultural differences in unimpaired and dyslexic reading: Behavioral and functional anatomical observations in readers of regular and irregular orthographies. In Brunswick, N., McDougall, S., & de Mornay-Davies, P. (Eds.), Reading and dyslexia in different orthographies (pp. 249272) New York, NY: Psychology Press.Google Scholar
Peng, D. L., Ding, G. S., Perry, C., Xu, D., Jin, Z., Luo, Q., … Deng, Y. (2004). fMRI evidence for the automatic phonological activation of briefly presented words. Cognitive Brain Research, 20, 156164. https://doi.org/10.1016/j.cogbrainres.2004.02.006 Google Scholar
Perfetti, C. A. (1992). The representation problem in reading acquisition. In Gough, P., Ehri L., L., & Treiman, R. (Eds.), Reading acquisition (pp. 145174). Hillsdale, NJ: Lawrence Erlbaum Associates Inc.Google Scholar
Price, C. J., & Devlin, J. T. (2003).The myth of the visual word form area. NeuroImage, 19,473481. https://doi.org/10.1016/S1053-8119(03)00084–3 CrossRefGoogle ScholarPubMed
Poldrack, R. A., Wagner, A. D., Prull, M. W., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1999). Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage, 10, 1535. https://doi.org/10.1006/nimg.1999.0441 Google Scholar
Richards, T. L., Aylward, H., Berninger, V. W., Field, K. M., Grinme, A. C., Richard, A. L., & Nagy, W. (2006). Individual fMRI activation in orthographic mapping and morpheme mapping after orthographic or morphological spelling treatment in child dyslexics. Journal of Neurolinguistics, 19, 5686. https://doi.org/10.1016/j.jneuroling.2005.07.003 Google Scholar
Richards, T. L., Berninger, V. W., & Fayol, M. (2009). fMRI activation differences between 11-year-old good and poor speller’s access in working memory to temporary and long-term orthographic representations. Journal of Neurolinguistics, 22, 327353. https://doi.org/10.1016/j.jneuroling.2008.11.002 CrossRefGoogle Scholar
Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-prime reference guide. Pittsburgh, PA: Psychology Software Tools.Google Scholar
Sebastián, N., Martí, M. A., Carreiras, M. F., & Cuetos, F. (2000). LEXESP. Léxico informatizado del español [LEXESP: Spanish computerized lexicon]. Barcelona, Spain: Edicions de la Universitat de Barcelona.Google Scholar
Vigneau, M., Beaucousin, V., Herve, P. Y., Duffau, H., Crivello, F., Houde, O., … Tzourio-Mazoyer, N. (2006). Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing. Neuroimage, 30, 14141432. https://doi.org/10.1016/j.neuroimage.2005.11.002 Google Scholar
Wimmer, H., Schurz, M., Sturm, D., Richlan, F., Klackl, J., Kronbichler, M., & Ladurner, G. (2010). A dual-route perspective on poor reading in a regular orthography: An fMRI study. Cortex, 46, 12841298. https://doi.org/10.1016/j.cortex.2010.06.004 Google Scholar
Zhan, J., Yu, H., & Zhou, X. (2013). fMRI evidence for the interaction between orthography and phonology in reading Chinese compound words. Frontiers in human neuroscience, 7, 753. https://doi.org/10.3389/fnhum.2013.00753 Google Scholar
Ziegler, J. C., & Goswami, U. (2006). Becoming literate in different languages: similar problems, different solutions. Developmental Science, 9, 429436. https://doi.org/10.1111/j.1467-7687.2006.00509.x Google Scholar