Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T08:33:46.347Z Has data issue: false hasContentIssue false

Synthesis and Catalytic Applications of Novel Mesoporous Aluminosilicate Molecular Sieves

Published online by Cambridge University Press:  10 February 2011

Kondam Madhusudan Reddy
Affiliation:
Laboratory for Hydrocarbon Process Chemistry and Fuel Science Program, Department of Materials Science and Engineering, The Pennsylvania State University, 209 Academic Projects Building, University Park, PA 16802–2303
Chunshan Song*
Affiliation:
Laboratory for Hydrocarbon Process Chemistry and Fuel Science Program, Department of Materials Science and Engineering, The Pennsylvania State University, 209 Academic Projects Building, University Park, PA 16802–2303
*
* Corresponding Author. Email: csong@psu.edu; Fax: 814–865–3075; Tel: 814–863–4466
Get access

Abstract

This paper reports on the synthesis of four series of mesoporous aluminosilicate molecular sieves (Al-MCM-41) and their catalytic applications. Four different aluminum compounds were examined as Al source in the hydrothermal synthesis of the mesoporous aluminosilicates of MCM-41 type, including pseudo boehmite (alumina), aluminum sulfate, aluminum isopropoxide, and sodium aluminate. Each Al source was examined at three different feed Si/Al ratios in the synthesis. XRD results show that there are differences in the dioo-spacings for the samples prepared with different Al sources: sodium aluminate > Al isopropoxide > Al sulfate > pseudo boehmite. Such differences reveal that Al incorporation in the framework increases in the following order: pseudo boehmite < Al sulfate < Al isopropoxide < sodium aluminate. XRD also indicates that the synthesized Al-MCM-41 samples have different crystallinity. 27Al NMR and 29Si NMR reveal that most of the Al species in the samples prepared with pseudo boehmite were present in octahedral coordination, whereas in other samples nearly all the Al species are tetrahedral (in the framework). The acid characteristics of the synthesized molecular sieves were characterized by temperature-programmed desorption of n-butylamine, and by using 1,3,5-triisopropylbenzene hydrocracking as probe reaction. The results of TPD and probe reaction clearly indicate that the Al source used for synthesis has a major impact on the acidic and catalytic properties of Al-MCM-41. The samples prepared with Al isopropoxide and sodium aluminate are better as catalysts than those with Al sulfate and pseudo boehmite. We also explored the potential of mesoporous molecular sieves as support for noble metal hydrogenation catalysts and metal sulfide-based hydrotreating catalysts. Pd and Pt-loaded mesoporous molecular sieves were prepared and applied for hydrogenation of naphthalene and phenanthrene. The results show that mesoporous molecular sieve-supported catalysts are much more active than alumina- and titania-supported catalysts. The data for dibenzothiophene hydrodesulfurization suggest that Al-MCM-41 supported Co-Mo may be effective for deep desulfurization of distillate fuels.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kresge, C.T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., and Beck, J. S., Nature 359, 710 (1992).Google Scholar
2. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., and Schlenker, J. C., J. Am. Chem. Soc. 114, 10834 (1992).Google Scholar
3. Chen, C.-Y., Burkett, S. L., Li, H.-X., and Davis, M., Micropor. Mater. 2, 17 (1993);Google Scholar
Chen, G-Y., Li, H.-X., and Davis, M., Micropor. Mater. 2, 27 (1993).Google Scholar
4. Vartuli, J. C., Schmitt, K. D., Kresge, C. T., Roth, W. J., Leonowicz, M. E., McCullen, S. B., Hellring, S. D., Beck, J. S., Schlenker, J. L., Olson, D. H., and Sheppard, E. W., Chem. Mater. 6, 2317 (1994).Google Scholar
5. Bagshaw, S. A., Prouzet, E., Pinnavaia, T. J., Science 269, 1242 (1995).Google Scholar
6. Tuel, A. and Gontier, S., Chem. Mater. 8, 114 (1996).Google Scholar
7. Silva, F. H. P. and Pastore, H. O., J. C. S., Chem. Commun. 833 (1996).Google Scholar
8. Sayari, A., Danumah, C., and Moudrakovski, I. L., Chem. Mater. 5, 813 (1995).Google Scholar
9. Cheng, C.-F., He, H., Zhou, W., Klinowski, J., Goncalves, J. A. S., and Gladden, L. F., J. Phys. Chem. 100, 390 (1996).Google Scholar
10. Yuan, Z. Y., Liu, S. Q., Chen, T. H., Wang, J. Z., and Li, H. X., J. C. S., Chem. Commun. 973 (1995).Google Scholar
11. Zhao, D. and Goldfarb, D., J. C. S., Chem. Commun. 875 (1995).Google Scholar
12. Blasco, T., Corma, A., Navarro, T., and Perez-Pariente, J., J. Catal. 156, 65 (1995).Google Scholar
13. Reddy, K. M., Moudrakovski, I., and Sayari, A., J. C. S., Chem. Commun. 1059 (1994).Google Scholar
14. Das, T. K., Chaudhari, K., Chandwadkar, A. J., and Sivasanker, S., J. C. S., Chem. Commun. 2495 (1995).Google Scholar
15. Pelrine, B. P., Schmitt, K. D., and Vartuli, J. C., U. S. Patent 5 105 051 (1992).Google Scholar
16. Kim, J-.B. and Inui, T., Catal. Lett. 36, 255 (1996).Google Scholar
17. Corma, A., Martinez, A., Martinez-Soria, V., and Monton, J. B., J. Catal. 153, 25 (1995).Google Scholar
18. Kloetstra, R. K., van Bekkum, H., J. Chem. Res. (Sym.) 26 (1995).Google Scholar
19. Reddy, K. M. and Song, C., Catal. Lett. 36, 103 (1996).Google Scholar
20. Quang, N. L., Hill, N. J. C., U.S. Patent 5 191 134 (1993).Google Scholar
21. Beck, J. S., Socha, R. F., Shihabi, D. S., Vartuli, J. C., U. S. Patent 5 143 707 (1992).Google Scholar
22. Reddy, K. M. and Song, C., Catal. Today 31, 137 (1996).Google Scholar
23. Reddy, K. M. and Song, C., Am. Chem. Soc. Div. Fuel Chem. Prepr. 40, 1003 (1995).Google Scholar
24. Song, C., Lai, W-.C., Schmitz, A. D., and Reddy, K. M., Am. Chem. Soc. Div. Fuel Chem. Prepr. 41, 71 (1996).Google Scholar
25. Reddy, K. M. and Song, C., Am. Chem. Soc. Div. Fuel Chem. Prepr. 41, 906 (1996).Google Scholar
26. Song, C. and Reddy, K. M., Am. Chem. Soc. Div. Petrol. Chem. Prepr. 41, 567 (1996).Google Scholar
27. Song, C., Nihonmatsu, T. and Nomura, M., Ind. Eng. Chem. Res., 30, 1726 (1991).Google Scholar
28. Jacobs, P. A., and Martens, J. A., Synthesis of High Silica Aluminosilicate Zeolites, Elsevier, 1987.Google Scholar
29. Branton, P. J., Hall, P. G., and Sing, K. S. W., J. C S., Chem. Commun. 1257 (1993).Google Scholar
30. Borade, R. B., and Clearfield, A., Catal. Lett. 32, 267 (1995).Google Scholar
31. Ghosh, A., and Curthoys, G., J. Phys. Chem. 88, 1130 (1984).Google Scholar
32. Kibino, T., Niwa, M., and Murakami, Y., Zeolites, 13, 518 (1993).Google Scholar
33. Aguiar, E. F. S., Murta Valle, M. L., Silva, M. P., and Silva, D. F., Zeolites 15, 620 (1995).Google Scholar
34. Namba, S., Inaka, A., and Yashima, T., Zeolites, 6, 107 (1986).Google Scholar
35. Kim, J.-H., Sugi, Y., Matsuzaki, T., Hanaoka, T., Kubota, Y., Tu, X., Matsumoto, M., Nakata, S., Kato, A., Seo, G., and Park, C., Appl. Catal. 131, 15 (1995).Google Scholar