Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T06:43:02.991Z Has data issue: false hasContentIssue false

Solid Electrolytes: Microstructural Characterization by Conductivity Spectroscopy

Published online by Cambridge University Press:  10 February 2011

K. Funke*
Affiliation:
Institut für Physikalische Chemie, Schlossplatz 4/7, D-48149 Minster, Germany
Get access

Abstract

In conductivity spectroscopy, ionic conductivities of solid electrolytes are measured continuously from a few Hertz up to the mid-infrared, i.e., in a frequency range covering more than twelve decades. In this paper we present experimental conductivity spectra of various cryst alline and glassy ionic conductors. Tracing the characteristic patterns of the spectra back to their generic processes provides a powerful means for probing the motion of the ions on atomic scales of space and time. The technique is particularly useful for exploring the single-particle potentials felt by the ions and, hence, for elucidating details of the surrounding structure. In our examples we discuss widths, anisotropies, and geometrical arrangements of sites in crystals as well as the existence of non-equivalent sites in glass.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Didisheim, J. J., McMullan, R.K. and Wuensch, B.J., Solid State Ionics 18/19, 1150 (1986).Google Scholar
2. Nield, V.M., Keen, D.A., Hayes, W., and McGreevy, R.L., J. Phys.: Cond. Matter 4, 6703 (1992).Google Scholar
3. Funke, K., Prog. Solid St. Chem. 22, 111 (1993).Google Scholar
4. Jonscher, A.K., Nature 267, 673 (1977).Google Scholar
5. Funke, K., Kloidt, T., Wilmer, D., and Carlile, C.J., Solid State Ionics 53–56, 947 (1992).Google Scholar
6. Cramer, C., Funke, K., Saatkamp, T., Wilmer, D., and Ingram, M.D., Z. Naturforsch. 50a, 613 (1995).Google Scholar
7. Funke, K., Kantimm, T., Maue, T., Zurwellen, D., Seebode, J., and Zachmann, G., Ber. Bunsenges. Phys. Chem. 93, 1330 (1989).Google Scholar
8. Reuter, B. and Hardel, K., Naturwissenschaften 48, 161 (1961).Google Scholar
9. Reuter, B. and Hardel, K., Z. Anorg. AlIg. Chem. 340, 168 (1965).Google Scholar
10. Aboagye, K. and Friauf, R. J., Phys. Rev. B11, 1654 (1975).Google Scholar
11. Friauf, R. J., in The Physics of Latent Image Formation in Silver Halides, edited by Balderschi, A., Czaja, W., Tosatti, E., and Tosi, M. (World Scientific, Singapore, 1984), p. 79.Google Scholar
12. Corish, J. and Mulcahy, D. C. A., J. Phys. C: Solid St. Physics 13, 6459 (1980).Google Scholar
13. Funke, K., Lauxtermann, T., Wilmer, D., and Bennington, S. M., Z. Naturforsch. 50a, 509 (1995).Google Scholar
14. Funke, K., Z. Phys. Chem. 188, 243 (1995).Google Scholar
15. Maass, P., Petersen, J., Bunde, A., Dieterich, W., and Roman, H. E., Phys. Rev. Lett. 66, 52 (1991).Google Scholar
16. Scher, H. and Lax, M., Phys. Rev. B7, 4491 (1973).Google Scholar
17. Funke, K., Maue, T., Wilmer, D., Cramer, C., and Saatkamp, T., in Ionic and Mixed Conducting Ceramics, edited by Ramanarayanan, T. A., Worrell, W. L., and Tuller, H. L. (The Electrochemical Society Softbound Proceedings, Pennington, 1994), p. 564.Google Scholar
18. Geller, S., Science 157, 310 (1967).Google Scholar
19. Bradley, J. N. and Greene, P. D., Trans. Faraday Soc. 63, 2516 (1967).Google Scholar
20. Kuhs, W. F. and Heger, G., Experimental Report, Institut Laue-Langevin, Grenoble, 1981.Google Scholar
21. Lee, W.-K., Liu, J. F., and Nowick, A. S., Phys. Rev. Lett. 67, 1559 (1991).Google Scholar
22. Bunde, A., Ingram, M. D., and Maass, P., J. Non-Cryst. Solids 172–174, 1222 (1994).Google Scholar