Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T09:30:27.127Z Has data issue: false hasContentIssue false

Characterization of in situ fibre digestion of several fibrous foods

Published online by Cambridge University Press:  18 August 2016

B. Escalona
Affiliation:
Departamento de Producción Animal, Universidad Politécnica ETS Ingenieros Agrónomos, 28040, Madrid, Spain
R. Rocha
Affiliation:
Departamento de Producción Animal, Universidad Politécnica ETS Ingenieros Agrónomos, 28040, Madrid, Spain
J. García
Affiliation:
Departamento de Producción Animal, Universidad Politécnica ETS Ingenieros Agrónomos, 28040, Madrid, Spain
R. Carabaño
Affiliation:
Departamento de Producción Animal, Universidad Politécnica ETS Ingenieros Agrónomos, 28040, Madrid, Spain
C. de Blast*
Affiliation:
Departamento de Producción Animal, Universidad Politécnica ETS Ingenieros Agrónomos, 28040, Madrid, Spain
*
To whom correspondence should be addressed.
Get access

Abstract

The disappearance of neutral-detergent fibre (NDF) from six fibrous foods (lucerne hay, NaOH-treated barley straw, olive leaves, paprika meal, soya-bean hulls and sunflower hulls) when incubated in the rumen of sheep in nylon bags was investigated. Source of fibre, time of incubation and its interaction had a significant (P < 0·01) effect on NDF degradation. Stepwise regression analysis showed that the best single predictor for NDF degradation rate was the hemicellulose fraction of NDF (HEMndf). The variables selected to predict potential degradability and degradability of NDF at 72 h were the proportions of acid-detergent lignin in NDF (ADLndf, first step) and of acid-detergent cutin in ADL (ADCadl, second step). For NDF degradability at 12 h, the variables selected were the proportions of HEMndf, ADLndf and ADCadl, in the first, second and third step, respectively. The results showed that ADC is an important component to understand NDF degradability at both 12 and 72 h.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Association of Official Analytical Chemists. 1984. Official methods of analysis, 14th edition. AOAC, Washington, DC.Google Scholar
Blumenkrantz, B. and Asboe-Hansen, G. 1973. New method for quantitative determination of uronić acids. Analytical Biochemistry 54: 484489.Google Scholar
Carro, M. D., López, S., González, J. S. and Ovejero, F. J. 1991. The use of the rumen degradation characteristics of hay as predictors of its voluntary intake by sheep. Animal Production 52: 133139.Google Scholar
DePeters, E. J., Fadel, J. G. and Arosamena, A. 1997. Digestion kinetics of neutral detergent fiber and chemical composition within some selected by-product feedstuffs. Animal Feed Science and Technology 67: 127140.Google Scholar
Garcia, J., Carabaño, R., Pérez-Alba, L. and Blas, C. de. 1996. Effect of fibre source on neutral detergent fibre digestion and caecal traits in rabbits. Proceedings of the sixth world rabbit congress (ed. Lebas, F.), INRA, Toulouse, pp. 175180.Google Scholar
García, G., Gálvez, J. F. and Blas, J. C. de. 1993. Effect of substitution of sugarbeet pulp for barley in diets for finishing rabbits on growth performance and on energy and nitrogen efficiency. Journal of Animal Science 71: 18231830.Google Scholar
Garcia, J., Pérez-Alba, L., Alvarez, C., Rocha, R., Ramos, M. and Blas, J. C. de. 1995. Prediction of the nutritive value of lucerne hay in diets for growing rabbits. Animal Feed Science and Technology 54: 3344.Google Scholar
Gidenne, T. 1994. Effets d’une réduction de la teneur en fibres alimentaires sur le transit digestif du lapin. Comparaison et validation de modèles d’ajustement des cinétiques d’excrétion fécale des marqueurs. Reproduction, Nutrition, Development 34: 295307.Google Scholar
Goering, H. K. and Van Soest, P. J. 1970. Forage fiber analysis. Agricultural handbook no. 379, United States Department of Agriculture, Washington, DC.Google Scholar
Hall, M. B., Pell, A. N. and Chase, L. E. 1998. Characteristics of neutral detergent-soluble fiber fermentation by mixed ruminai microbes. Animal Feed Science and Technology 70: 2339.Google Scholar
Jung, H. G. and Allen, M. S. 1995. Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. Journal of Animal Science 73: 27742790.CrossRefGoogle ScholarPubMed
Licitra, G., Hernández, T. M. and Van Soest, J. P. 1996. Standardization of procedures for nitrogen fractionation of ruminant feed. Animal Feed Science and Technology 57: 347358.Google Scholar
Mertens, D. R. 1977. Dietary fiber components: relationship to the rate and extent of ruminai digestion. Federation Proceedings 36: 187192.Google Scholar
Ørskov, E. R. and McDonald, I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science, Cambridge 92: 499503.Google Scholar
Seoane, J. R. 1982. Relationships between the physico-chemical characteristics of hays and their nutritive value. Journal of Animal Science 55: 422431.CrossRefGoogle Scholar
Smith, L. W., Goering, H. K. and Gordon, C. H. 1972. Relationships of forage compositions with rates of cell wall digestion and indigestibility of cell walls. Journal of Dairy Science 55: 11401147.CrossRefGoogle Scholar
Sniffen, C. J., O’Oconnor, J. D., Van Soest, P. J., Fox, D. G. and Rusell, J. B. 1992. A net carbohydrate and protein system for evaluating cattle diets. II. Carbohydrate and protein availability. Journal of Animal Science 70: 35653577.Google Scholar
Statistical Analysis Systems Institute. 1990. SAS/STAT user’s guide, version 6. Statistical Analysis Systems Institute Inc., Cary, NC.Google Scholar
Stensig, T., Weisbjerg, M. R., Madsen, J. and Hvelplund, T. 1994 Estimation of voluntary feed intake from in sacco degradation and rate of passage of DM or NDF. Livestock Production Science 39: 4952.Google Scholar
Van Soest, P. J. 1986. Definition of fibre in animal feeds. In Recent advances in animal nutrition (ed Haresign, W. and Cole, D. J. A.), pp. 5570. Butterworths, London.Google Scholar
Van Soest, P. J. 1994. Nutritional ecology of the ruminant, second edition. Cornell University Press, Ithaca, NY.CrossRefGoogle Scholar
Van Soest, P. J., Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 35833597.Google Scholar
Varga, G. A. and Hoover, W. H. 1983. Rate and extent of neutral detergent fiber degradation of feedstuffs in situ. Journal of Dairy Science 66: 21092115.Google Scholar