Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-14T01:16:27.526Z Has data issue: false hasContentIssue false

Effect of Light Intensity on Schottky Barrier Widths and I-V Characteristics of Polymer Heterojunction Photodiodes

Published online by Cambridge University Press:  08 July 2011

Ali Bilge Guvenc
Affiliation:
Department of Electrical Engineering, University of California Riverside, Riverside, CA 92521, U.S.A.
Cengiz Ozkan
Affiliation:
Department of Mechanical Engineering, University of California Riverside, Riverside, CA 92521, U.S.A. Material Science and Engineering Program, University of California Riverside, Riverside, CA 92521, U.S.A.
Mihrimah Ozkan
Affiliation:
Department of Electrical Engineering, University of California Riverside, Riverside, CA 92521, U.S.A.
Get access

Abstract

The Schottky barriers that forms on the interface between aluminum and organic semiconductor of polymer heterojunction photodiodes based on poly(3-hexylthiophene): [6,6]-phenyl-C61-butyric acid methylester blend, has been investigated according to Mott-Schottky curves. We focused on the effect of light intensity on the Schottky barrier widths and I-V characteristics of the devices. Comparison of the mathematical models and experimental data measured under different light intensities indicate a dependency of Schottky barrier to the light intensity.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chaudhary, S., Lu, H. W., Muller, A. M., Bardeen, C. J. and Ozkan, M., Nano Letters 7 (7), 19731979 (2007).10.1021/nl070717lGoogle Scholar
2. Kumar, Pankaj, Jain, S. C., Kumar, Vikram, Chand, Suresh, and Tandon, R. P., J. Appl. Phys. 105, 104507 (2009).Google Scholar
3. Yang, Chia-Ming, Tsai, Pei-Yu, Horng, Sheng-Fu, Lee, Kuan-Chen, Tzeng, Shin-Rong, Meng, Hsin-Fei, Shy, Jow-Tsong, and Shu, Ching-Fong, Appl. Phys. Lett. 92, 083504 (2008).Google Scholar
4. Abdou, M. S. A., Orfino, F. P., Son, Y. and Holdcroft, S., Journal of the American Chemical Society 119(19), 45184524 (1997).10.1021/ja964229jGoogle Scholar
5. Glatthaar, M., Riede, M., Keegan, N., Sylvester-Hvid, K., Zimmermann, B., Niggemann, M., Hinsch, A. and Gombert, A., Solar Energy Materials and Solar Cells 91(5), 390393 (2007).Google Scholar
6. Rep, D. B. A., Morpurgo, A. F. and Klapwijk, T. M., Organic Electronics 4(4), 201207 (2003).10.1016/S1566-1199(03)00016-8Google Scholar
7. Bisquert, J., Garcia-Belmonte, G., Munar, A., Sessolo, M., Soriano, A. and Bolink, H. J., Chemical Physics Letters 465(1-3), 5762 (2008).10.1016/j.cplett.2008.09.035Google Scholar
8. Muller, R. S., Kamins, T. I. and Chan, M., Device Electronics for Integrated Circuits. (Wiley, New York, 2003).Google Scholar
9. Sze, S. M. and Ng, K. K., Physics of Semiconductors. (Wiley, New Jersey, 2007).Google Scholar
10. Lioudakis, E., Othonos, A., Alexandrou, I. and Hayashi, Y., Applied Physics Letters 91(11), - (2007).Google Scholar
11. Kumar, P., Jain, S. C., Kumar, V., Chand, S. and Tandon, R. P., Journal of Physics D-Applied Physics 42(5), - (2009).Google Scholar
12. Anderson, B. L. and Anderson, R. L., Fundamentals of Semiconductor Devices. (Mc Graw Hill, New York, 2005).Google Scholar
13. Garcia-Belmonte, G., Munar, A., Barea, E. M., Bisquert, J., Ugarte, I. and Pacios, R., Organic Electronics 9(5), 847851 (2008).Google Scholar
14. Jarosz, G., Journal of Non-Crystalline Solids 354(35-39), 43384340 (2008).Google Scholar