Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-08T04:03:30.263Z Has data issue: false hasContentIssue false

Role of Ambience on the Diffusion of Charge Carriers in the Tio2 Layers Investigated by the Photovoltage Technique

Published online by Cambridge University Press:  11 February 2011

V. Duzhko
Affiliation:
ECE Department, New Jersey Institute of Technology, NJ 07102 Newark, USA
J. Rappich
Affiliation:
Abt. Silizium Photovoltaik, Hahn-Meitner-Institute, Kekuléstr. 5, D - 12489 Berlin, Germany
Th. Dittrich
Affiliation:
Physik Department E16, Technische Universität München, D - 85747 Garching, Germany
Get access

Abstract

The transition from anatase to rutile crystalline phase and from continuous to porous morphology was observed by Raman spectroscopy and scanning electron microscopy, respectively, in anodic TiO2 layers as the time of anodization was increased. The mechanism of the PV formation changes from trap- limited PV in thin continuous layers to diffusion PV in thick porous layers. The generation of excess charge carriers and their subsequent separation in space are strongly dependent on the ambience (air, vacuum, water) in porous layers. The importance of polar water molecules for screening of surface ions of porous TiO2 and excess charge carriers separated in space is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schmidt, W., Ann. Physik 9, 919 (1902).Google Scholar
2. Wilk, G. D., Wallace, R. M., Anthony, J. M., J. Appl. Phys. 89, 5243 (2001).Google Scholar
3. Kronik, L., Shapira, Y., Surf. Sci. Rep 37, 1 – 206 (1999).Google Scholar
4. Brillson, L. J., Phys. Rev. B 18, 2431 (1978).Google Scholar
5. Duzhko, V., Timoshenko, V. Yu., Koch, F. and Dittrich, Th., Phys. Rev. B 64, 075204 (2001).Google Scholar
6. Tang, H., Prasad, K., Sanjines, R., Schmid, P. E., and Levy, F., J. Appl. Phys. 75, 2042 (1994).Google Scholar
7. Porto, S. P. S., Fleury, P. A., and Damen, T. C., Phys. Rev. 154, 522 (1967).Google Scholar
8. Dittrich, Th., Duzhko, V., Koch, F., Kytin, V., Rappich, J., Phys. Rev. B 65, 155319 (2002).Google Scholar
9. Duzhko, V., Dissertation A, TU Muenchen (2002).Google Scholar
10. Tang, H., Levy, F., Berger, H., and Schmid, P. E., Phys. Rev. B 52, 7771 (1995).Google Scholar
11. Henrich, V., Dresselhaus, G., and Zeiger, H. J., Sol. St. Com. 24, 623 (1977).Google Scholar
12. Fujishima, A., Honda, K., Nature 238, 37 (1972).Google Scholar
13.See, for example, Weidmann, J., Dissertation A, TU Muenchen (1997) and references therein.Google Scholar