Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T21:56:52.268Z Has data issue: false hasContentIssue false

Properties of Point-Defects in Si for Process Modeling

Published online by Cambridge University Press:  15 February 2011

H.-J. Gossmann
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974.
C. S. Rafferty
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974.
P. A. Stolk
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974.
D. J. Eaglesham
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974.
G. H. Gilmer
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974.
J. M. Poate
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974.
H.-H. Vuong
Affiliation:
AT&T Bell Laboratories, Allentown, PA 18103.
T.K. Mogi
Affiliation:
Dept. of MS&E, Cornell University, Ithaca, NY 14850.
M. O. Thompson
Affiliation:
Dept. of MS&E, Cornell University, Ithaca, NY 14850.
Get access

Abstract

The development of future Si device technologies will rely extensively on modeling, requiring truly predictive tools. Here we focus on the front-end processes, during which ion-implantation and annealing create 3-D impurity profiles that determine crucial electrical device parameters. The final configuration is the result of a complex interaction of dopant atoms with Si self-interstitials and vacancies, which themselves interact with each other as well as with the implantation-induced damage and interfaces. Predictive modeling requires for all these processes a solid understanding of the physical phenomena as well as accurate quantitative information. Si self-interstitials and vacancies are not observable directly in an experiment, but only via their interactions with some other physical quantity of the sample. We review our work employing dopant atoms in δ-doping superlattices (δ-DSL) that yield directly the time averaged depth profiles of Si native point defects during a particular processing sequence. This approach is uniquely suited for giving insights into the interplay of point defects in Si, providing crosschecks for atomistic calculations as well as parameters for process simulators. We describe experiments to extract interstitial and vacancy parameters and discuss the influence of intrinsic and extrinsic interstitial traps, as well as of the annealing environment, on the native point defect population. The latter allows to place certain bounds on the interstitial vacancy recombination coefficient as well as the ratio of interstitial and vacancy equilibrium concentrations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Semiconductor Industry Association, The National Technology Roadmap for Semiconductors (SIA, San Jose, 1995).Google Scholar
2 Cho, K., Numan, M., Finstad, T. G., Chu, W. K., Liu, J. and Wortman, J. J., Appl. Phys. Lett. 47, 1321 (1985).Google Scholar
3 Angelucci, R., Negrini, P., and Solmi, S., Appl. Phys. Lett., 49, 1468 (1986).Google Scholar
4 Michel, A. E., Rausch, W., Ronsheim, P. A. and Kastl, R. H., Appl. Phys. Lett. 50, 416 (1987).Google Scholar
5 Seeger, A. and Chik, K. P., phys. stat. sol. 29, 455 (1968).Google Scholar
6 Fahey, P. M., Griffin, P. B. and Plummer, J. D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
7 Eaglesham, D. J., Stolk, P. A., Gossmann, H.-J. and Poate, J. M., Appl. Phys. Lett. 65, 2305 (1994).Google Scholar
8 Giles, M. D., J. Electrochem. Soc. 138, 1160 (1991).Google Scholar
9 Gossmann, H.-J., Rafferty, C. S., Luftman, H. S., Unterwald, F. C., Boone, T. and Poate, J. M., Appl. Phys. Lett. 63, 639 (1993).Google Scholar
10 Gossmann, H.-J., Gilmer, G. H., Rafferty, C. S., Unterwald, F. C., Boone, T., Poate, J. M., Luftman, H. S. and Frank, W., J. Appl. Phys 77, 1948 (1995).Google Scholar
11 Stolk, P. A., Gossmann, H.-J., Eaglesham, D. J., Jacobson, D. C., Luftman, H. S., Poate, J. M., Proc. Mat. Res. Soc., to be published.Google Scholar
12 Bracht, H., Stolwijk, N. A. and Mehrer, H., 7th Int. Symp. on Silicon Mater. Science and Technol., San Francisco, May 22-27, 1994 Google Scholar
13 Morehead, F. F., Mat. Res. Symp. Soc. Proc. 104, 99 (1988).Google Scholar
14 Gilmer, G. H., Rubia, T. Diaz de la, Stock, D. M. and Jaraiz, M., Nucl. Instrum. Meth. Phys. Res. B, to be published.Google Scholar
15 Gossmann, H.-J. and Schubert, E. F., Critical Reviews in Solid State and Material Science, 18, 1 (1993).Google Scholar
16 Hu, S. M., J. Appl. Phys. 45, 1567 (1974).Google Scholar
17 Griffin, P. B., Ph.-D. Thesis, Stanford University, 1989; SRC Technical Report T90091;Google Scholar
18 Griffin, P. B., Ahn, S. T., Tiller, W. A. and Plummer, J. D., Appl. Phys. Lett. 51, 115 (1987).Google Scholar
19 Law, M. E., IEEE Trans. Comp. Aided Design 10, 1125 (1991).Google Scholar
20 Cowern, N. E. B., Appl. Phys. Lett. 54, 1415 (1989).Google Scholar
21 Cowern, N. E. B., Appl. Phys. Lett. 64, 2646 (1994).Google Scholar
22 Zimmermann, H. and Ryssel, H., Appl. Phys. A 55, 121 (1992).Google Scholar
23 Gossmann, H.-J., Asoka-Kumar, P., Leung, T. C., Nielsen, B., Lynn, K. G., Unterwald, F. C. and Feldman, L. C., Appl. Phys. Lett. 61, 540 (1992).Google Scholar
24 Asoka-Kumar, P., Gossmann, H.-J., Unterwald, F. C., Feldman, L. C., Leung, T. C., Au, H. L., Talyanski, V., Nielsen, B. and Lynn, K. G., Phys. Rev. B 48, 5345 (1993).Google Scholar
25 Koiwa, M., Acta Metallurg. 22, 1259 (1974).Google Scholar
26 Stolk, P. A., Eaglesham, D. J., Gossmann, H.-J. and Poate, J. M., Appl. Phys. Lett. 66, 1370 (1995).Google Scholar
27 Lim, D. R., Rafferty, C. S., King, C. A., Gossmann, H.-J., Luftman, H. S., Kister, R. C., to be published.Google Scholar
28 Rafferty, C. S., private communicationGoogle Scholar
29 Vuong, H.-H., Gossmann, H.-J., Rafferty, C. S., Luftman, H. S., Unterwald, F. C., Jacobson, D. C., Ahrens, R. E., Boone, T. and Zeitzoff, P. M., J. Appl. Phys., in printGoogle Scholar
30 Mogi, T. K., Gossmann, H.-J., Eaglesham, D. J., Rafferty, C. S., Luftman, H. S., Unterwald, F. C., Boone, T., Poate, J. M. and Thompson, M. O., J. Electrochem. Soc., to be published.Google Scholar
31 Herner, B., Jones, K. S. and Gossmann, H.-J., to be published.Google Scholar
32 Tan, T. Y. and Gösele, U., Appl. Phys. A 37, 1 (1985).Google Scholar
33 Park, H. and Law, M. E., J. Appl. Phys. 72, 3431.Google Scholar
34 Gossmann, H.-J., Rafferty, C. S., Unterwald, F. C. and Boone, T., Mogi, T. K., Thompson, M. O. and Luftman, H. S., Appl. Phys. Lett., to be published.Google Scholar