Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T01:57:42.486Z Has data issue: false hasContentIssue false

Ordered Morphologies of Confined Diblock Copolymers

Published online by Cambridge University Press:  21 March 2011

Yoav Tsori
Affiliation:
School of Physics and Astronomy Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, 69978 Ramat Aviv, Israel
David Andelman
Affiliation:
School of Physics and Astronomy Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, 69978 Ramat Aviv, Israel
Get access

Abstract

We investigate the ordered morphologies occurring in thin-films diblock copolymer. For temperatures above the order-disorder transition and for an arbitrary two-dimensional surface pattern, we use a Ginzburg-Landau expansion of the free energy to obtain a linear response description of the copolymer melt. The ordering in the directions perpendicular and parallel to the surface are coupled. Three dimensional structures existing when a melt is confined between two surfaces are examined. Below the order-disorder transition we find tilted lamellar phases in the presence of striped surface fields.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bates, F. S. and Fredrickson, G. H., Annu. Rev. Phys. Chem. 41, 525 (1990).Google Scholar
[2] Ohta, K. and Kawasaki, K., Macromolecules 19, 2621 (1986).Google Scholar
[3] Leibler, L., Macromolecules 13, 1602 (1980).Google Scholar
[4] Binder, K., Frisch, H. L. and Stepanow, S., J. Phys. II 7, 1353 (1997).Google Scholar
[5] Fredrickson, G.H. and Helfand, E., J. Chem. Phys. 87, 697 (1987).Google Scholar
[6] Matsen, M. W. and Schick, M., Phys. Rev. Lett. 72, 2660 (1994);M. W. Matsen and F. Bates, Macromolecules 29, 7641 (1996).Google Scholar
[7] Fredrickson, G. H., Macromolecules 20, 2535 (1987).Google Scholar
[8] Tang, H. and Freed, K. F., J. Chem. Phys. 97, 4496 (1992).Google Scholar
[9] Shull, K. R., Macromolecules 25, 2122 (1992).Google Scholar
[10] Turner, M. S., Phys. Rev. Lett. 69, 1788 (1992).Google Scholar
[11] Turner, M. S., Rubinstein, M. R. and Marques, C. M., Macromolecules 27, 4986 (1994).Google Scholar
[12] Matsen, M. W., J. Chem. Phys. 106, 7781 (1997).Google Scholar
[13] Anastasiadis, S. H., Russell, T. P., Satija, S. K. and Majkrzak, C. F., Phys. Rev. Lett. 62, 1852 (1989).Google Scholar
[14] Menelle, A., Russell, T. P., Anastasiadis, S. H., Satija, S. K. and Majkrzak, C. F., Phys. Rev. Lett. 68, 67 (1992).Google Scholar
[15] Walton, D. G., Kellogg, G. J., Mayes, A. M., Lambooy, P. and Russell, T. P., Macromolecules 27, 6225 (1994).Google Scholar
[16] Kellogg, G. J., Walton, D. G., Mayes, A. M., Lambooy, P., Russell, T. P., Gallagher, P. D. and Satija, S. K., Phys. Rev. Lett. 76, 2503 (1996).Google Scholar
[17] Mansky, P., Russell, T. P., Hawker, C. J., Mayes, J., Cook, D. C. and Satija, S. K., Phys. Rev. Lett. 79, 237 (1997).Google Scholar
[18] Milner, S. T. and Morse, D. C., Phys. Rev. E 54, 3793 (1996).Google Scholar
[19] Pickett, G. T. and Balazs, A. C., Macromolecules 30, 3097 (1997).Google Scholar
[20] Petera, D. and Muthukumar, M., J. Chem. Phys. 107, 9640 (1997); D. Petera and M. Muthukumar, J. Chem. Phys. 109, 5101 (1998).Google Scholar
[21] Geisinger, T., Mueller, M. and Binder, K., J. Chem. Phys. 111, 5241 (2000).Google Scholar
[22] Pereira, G. G. and Williams, D. R. M., Phys. Rev. E 60, 5841 (1999); G. G. Pereira and D. R. M. Williams, Phys. Rev. Lett. 80, 2849 (1998).Google Scholar
[23] Fink, Y., Winn, J. N., Fan, S., Chen, C., Michael, J., Joannopoulos, J. D. and Thomas, E. L., Science 282, 1679 (1998).Google Scholar
[24] Walheim, S., Schäffer, E., Mlynek, J. and Steiner, U., Science 283, 520 (1999).Google Scholar
[25] Park, M., Harrison, C., Chaikin, P. M., Register, R. A. and Adamson, D. H., Science 276, 5317 (1997).Google Scholar
[26] Tsori, Y., Andelman, D. and Schick, M., Phys. Rev. E. 61, 2848 (2000).Google Scholar
[27] Netz, R. R., Andelman, D. and Schick, M., Phys. Rev. Lett. 79, 1058 (1997); S. Villain-Guillot, R. R. Netz, D. Andelman and M. Schick, Physica A 249, 285 (1998); S. Villain-Guillot and D. Andelman, Eur. Phys. J. B 4, 95 (1998).Google Scholar
[28] Swift, J. and Hohenberg, P. C., Phys. Rev. A 15, 319 (1977).Google Scholar
[29] Seul, M. and Andelman, D., Science 267, 476 (1995).Google Scholar
[30] Jacobs, A. E., Mukamel, D. and Allender, D. W., Phys. Rev. E 61, 2753 (2000).Google Scholar
[31] Gompper, G. and Schick, M., Phys. Rev. Lett. 65, 1116 (1990); F. Schmid and M. Schick, Phys. Rev. E 48, 1882 (1993).Google Scholar
[32] Gompper, G. and Zschocke, S., Phys. Rev. A 46, 1836 (1992).Google Scholar
[33] Andelman, D., Brochard, F. and Joanny, J.-F., J. Chem. Phys. 86, 3673 (1987).Google Scholar
[34] Garel, T. and Doniach, S., Phys. Rev. B 26, 325 (1982).Google Scholar
[35] Tsori, Y. and Andelman, D., Macromolecules, in press (2001).Google Scholar
[36] Tsori, Y. and Andelman, D., Europhys. Lett., to be published (2001).Google Scholar
[37] Tsori, Y. and Andelman, D., unpublished.Google Scholar