Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T01:26:11.616Z Has data issue: false hasContentIssue false

Molecular Weight Dependence of the Surface Glass Transition of Polystyrene Films Investigated by the Embedding of Gold Nanoclusters

Published online by Cambridge University Press:  17 March 2011

J. Erichsen
Affiliation:
Lehrstuhl für Materialverbunde, Faculty of Engineering, University of Kiel, Kaiserstr. 2, 24143 Kiel, Germany
K. Günther-Schade
Affiliation:
Lehrstuhl für Materialverbunde, Faculty of Engineering, University of Kiel, Kaiserstr. 2, 24143 Kiel, Germany
K. Dolgner
Affiliation:
Lehrstuhl für Materialverbunde, Faculty of Engineering, University of Kiel, Kaiserstr. 2, 24143 Kiel, Germany
T. Strunskus
Affiliation:
Current address: Lehrstuhl für Physikalische Chemie I, University of Bochum, Universitätsstr. 150, 44801 Bochum, Germany
V. Zaporojtchenko
Affiliation:
Lehrstuhl für Materialverbunde, Faculty of Engineering, University of Kiel, Kaiserstr. 2, 24143 Kiel, Germany
F. Faupel*
Affiliation:
Lehrstuhl für Materialverbunde, Faculty of Engineering, University of Kiel, Kaiserstr. 2, 24143 Kiel, Germany
*
corresponding author ff@tf.uni-kiel.de
Get access

Abstract

We probed the glass transition temperature Tg at the surface of polystyrene (PS) samples with different molecular weights by embedding of gold nanoclusters. The embedding of the nano-clusters was monitored by x-ray photoelectron spectroscopy (XPS). The onset embedding temperature determined by XPS was taken as a measure for the Tg at the surface. We observed a small decrease of Tg at the surface relative to the bulk for all molecular weights (ΔTg= 2.5- 8.5 K). This decrease is small for short chains (MW = 3.6 kg/mol) and grows to a saturation for MW ≥ 44 kg/mol (ΔTg ≍ 8 K). This is in accord with the smaller relative increase in the number of degrees of freedom between bulk and surface for shorter chains.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) for a review see, e. g., Forrest, J. A. and Jones, R. A.L. in “Polymer Surfaces, Interfaces and Thin Films”, edited by Karim, A. and Kumar, S. World Scientific (2000).Google Scholar
(2) Mayes, A. M. Macromolecules, 27, 3114 (1994).Google Scholar
(3) Baschnagel, J. and Binder, K. Macromolecules, 28, 6808 (1995).Google Scholar
(4) Jean, Y. C.; Zhang, R.; Cao, H.; Yuan, J.-P.; Huang, C.-M.; Nielsen, B.; Asoka-Kumar, P. Phys.Rev. B, 56, R8459 (1997).Google Scholar
(5) Kajiyama, T, Tanaka, K. and , Takahara, Macromolecules, 30, 280 (1997).Google Scholar
(6) Wallace, W. E.; van Zanten, J. H. and Wu, W. L. Phys. Rev. B, 52, R3329 (1995).Google Scholar
(7) Ge, S. Pu, Y., Zhang, W., Rafailovich, M., Sokolov, J., Buenviaje, C., Buckmaster, R., and Overney, R. M., Phys. Rev. Lett., 85, 2340 (2000).Google Scholar
(8) Liu, Y., Russell, T.P., Samant, M.G., Stöhr, J., Brown, H.R., Cossy-Favre, A. and Diaz, J., Macromolecules 30, 7768 (1997).Google Scholar
(9) Zaporojtchenko, V., Strunskus, T., Erichsen, J., and Faupel, F., Macromolecules, 34, 1125 (2000).Google Scholar
(10) Weber, R., Zimmermann, K.-M., Tolan, M., Stettner, J., Press, W., Seeck, O. H., Erichsen, J., Zaporojtchenko, V., Strunskus, T., and Faupel, F., Phys. Rev. E. in press.Google Scholar
(11) Kovacs, G. J. and Vincett, P.S. J. of Colloid and Interface Science, 90, 335 (1982).Google Scholar
(12) Bechtolsheim, C.; Zaporojtchenko, V.; Faupel, F. Appl. Surf. Sci., 151, 119, (1999).Google Scholar
(13) Zaporojtchenko, V.; Behnke, K.; Thran, A.; Strunskus, T.; Faupel, F. Appl. Surf. Sci., 144, 355, (1999).Google Scholar
(14) Zaporojtchenko, V.; Behnke, K.; Strunskus, T.; Faupel, F. Surf. and Interface Anal., 30, 439 (2000).Google Scholar
(15) Dolgner, K., et al. in preparation.Google Scholar