Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T13:45:34.691Z Has data issue: false hasContentIssue false

Comments on the Role of Molecular Genetics in Polymer Materials Science

Published online by Cambridge University Press:  15 February 2011

Maurille J. Fournier
Affiliation:
Departments of BiochemistryUniversity of Massachusetts, Amherst, MA 01003
Thomas L. Mason
Affiliation:
Departments of BiochemistryUniversity of Massachusetts, Amherst, MA 01003
David A. Tirrell
Affiliation:
Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
Get access

Extract

The most fundamental goal of the synthetic chemist is control of molecular architecture. With respect to small molecules (i.e., those of molecular weight less than a few thousand), this means absolute control of chemical connectivity and stereochemistry – complete specification of molecular structure. But in macromolecular chemistry, controlled architecture has meant something quite different. Because polymerizations are in general statistical processes, conventional polymeric materials are characterized by substantial heterogeneity in chain length, sequence and stereochemistry [1]. Control is exercised in a statistical sense only, and considerable skill is required to control even the average properties of the chain population and the dispersity in those properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Odian, G., Principles of Polymerization, 2nd ed., Wiley, New York, 1981.Google Scholar
2. Szwarc, M., Adv. Polym. Sci. 49, 1 (1983).CrossRefGoogle Scholar
3. Boor, J. Jr., Ziegler-Natta Catalysts and Polymerizations, Academic Press, New York, 1979.Google Scholar
4. Gupta, S. C., Weigh, H. L. and Somerville, R. L., Biotechnology 9, 602 (1983).,Google Scholar
5. For a brief review, see Brawerman, G., Cell 57, 9 (1989).Google Scholar
6. Dreyfus, M., J. Mol. Biol. 204, 79 (1988) and references therein.Google Scholar
7. Gutman, G. A. and Hatfield, G. W., Proc. Natl. Acad. Sci., USA 86, 3699 (1989) and references therein.Google Scholar
8. Varshavsky, A., Bachmair, A., Finley, D., Gonda, D. and Wünning, I., in Ubiquitin, Rechsteiner, M., ed., Plenum, New York, 1988, p. 287; S. A. Goff, R. Voellmy and A. L. Goldberg, Ubiquitin, M. Rechsteiner, ed., Plenum, New York, 1988 p. 207.Google Scholar
9. McGrath, K. P., Tirrell, D. A., Kawai, M., Mason, T. L. and Fournier, M. J., Biotech. Prog., 6, 188 (1990); K. P. McGrath, M. J. Fournier, T. L. Mason and D. A. Tirrell, Polym. Prepr. 30(1), 190 (1990); H.S. Creel, M.J. Fournier, T.L. Mason and D.A. Tirrell, Macromolecules, in press.Google Scholar
10. Preprints of papers, Symposium on Protein-Based Polymers, American Chemical Society, Boston, 1990; Polym. Prepr. 30(1), 176 ff (1990); J. Cappello, J. Crissman, M. Dorman, M. Mikolajczak, G. Textor, M. Marquet and F. Ferrari, Biotech. Prog. 6, 198 (1990); I. Goldberg, A.J. Salerno, T. Patterson and J.I. Williams, Gene 80, 305 (1989).Google Scholar
11. Cappello, J. and Crissman, J. W., Polym. Prepr. 30(1), 193 (1990).Google Scholar